




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年科大附中數(shù)學(xué)高二上期末聯(lián)考模擬試題
注意事項:
1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)
填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處”o
2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦
干凈后,再選涂其他答案。答案不能答在試題卷上。
3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先
劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。
4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。
一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。
1.過拋物線V=6x焦點R的直線與拋物線交于A,3兩點,人尸=3所,拋物線的準(zhǔn)線/與無軸交于點C,則ABC
的面積為()
A.6A/2B.6君
C.3V2D.36
2.設(shè)aeH,貝U“a=l”是“直線/i:ax+2y—1=0與直線4:x+(a+Dy—〃=0”平行的()
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.即不充分也不必要條件
3.設(shè)直線/:or+(a—2)y+l=0,Z2:x+ay-3=0.±/2,則"的值為()
A.0或1B.0或—1
C.1D.-1
221
4.已知點耳,工是橢圓C:工+==1(?!?〉0)的左、右焦點,A是C的左頂點,點P在過A且斜率為了的直
ab4
線上,△尸月耳為等腰三角形,且N68P=150。,則C的離心率為()
3—1
A.---------B.-
63
DT
6
5.若向量。二(1,2,0),6=(—2,0,1),貝!JO
/人1
A.cos\62,b/——B.
2
D.iE
C.allb
6.已知向量a=(x,l),6=(4,x),貝!J"x=2”是“a〃匕”的。
A充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件
7.已知向量a=(無2,5)與b=(Ly—3)平行,則()
A.孫=2B.x-2y=15
C.x+2y=15D.孫=一2
8.曲線y=e'+l上的點到直線無一丁―2=0的距離的最小值是。
A.3B.近
C.2D.2拉
9.設(shè)向量a=(x,l,l),b=(i,y,l),c=(2,-4,2),且。,。,b//c>則,+,=()
A.272B.V10
C.3D.4
10.已知向量。=(—1,2,3),力=(2,-1,—4),則下列向量中,使寸能構(gòu)成空間的一個基底的向量是()
A.c=(-2,1,4)B.c=(l,l,-1)
C.c=(-8,7,18)D.c=(—1,2,-4)
11.圓d+j?-2x+4y-4=0的圓心坐標(biāo)與半徑分別是()
A.(l,-2),2B.(-l,2),2
C.(1,-2),3D.(-l,2),3
12.現(xiàn)從4名男醫(yī)生和3名女醫(yī)生中抽取兩人加入“援鄂醫(yī)療隊”,用A表示事件“抽到的兩名醫(yī)生性別相同”,3表示
事件“抽到的兩名醫(yī)生都是女醫(yī)生”,則P(叫A)=()
14
A.-B.-
37
-23
C.—D.一
34
二、填空題:本題共4小題,每小題5分,共20分。
13.已知橢圓「+卓=1(?!等恕?)的短軸長為2,上頂點為A,左頂點為B,左、右焦點分別是片,F(xiàn)2,且
2-J311
的面積為甘點尸為橢圓上的任意一點,則西+西的取值范圍是.
14.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一2400人、高二2000人、高三"人中,抽取90人進行問
卷調(diào)查.已知高一被抽取的人數(shù)為36,那么高二被抽取的人數(shù)為
15.在空間直角坐標(biāo)系。一孫z中,向量3=(1,3,—2)為平面ABC的一個法向量,其中A。,—1J),3(3,1,4),則向
量AB的坐標(biāo)為
16.如圖所示,高爾頓釘板是一個關(guān)于概率的模型,每一黑點表示釘在板上的一顆釘子,它們彼此的距離均相等,上
一層的每一顆的水平位置恰好位于下一層的兩顆正中間.小球每次下落時,將隨機的向兩邊等概率的落下.當(dāng)有大量
的小球都落下時,最終在釘板下面不同位置收集到小球.現(xiàn)有5個小球從正上方落下,則恰有3個小球落到2號位置
三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。
17.(12分)已知數(shù)列{4}的首項4=1,且滿足a=+i=f1("eN*).
(1)求證:數(shù)列為等差數(shù)列;
(2)設(shè)g=一,求數(shù)列{%}的前"項和S..
an
18.(12分)某公園有一形狀可抽象為圓柱的標(biāo)志性景觀建筑物,該建筑物底面直徑為8米,在其南面有一條東西走
向的觀景直道,建筑物的東西兩側(cè)有與觀景直道平行的兩段輔道,觀景直道與輔道距離10米.在建筑物底面中心。
的東北方向200米的點A處,有一360°全景攝像頭,其安裝高度低于建筑物的高度
?A
攝像頭
西輔道(7)東輔道
西景蠡/物光景直道東
(1)在西輔道上距離建筑物1米處的游客,是否在該攝像頭的監(jiān)控范圍內(nèi)?
(2)求觀景直道不在該攝像頭的監(jiān)控范圍內(nèi)的長度
2
19.(12分)在平面直角坐標(biāo)系xOy中,已知拋物線C:V=2px(p>0)的焦點尸到雙曲線(-產(chǎn)=1的漸近線
的距離為L
(1)求拋物線C的方程;
(2)若不經(jīng)過原點。的直線/與拋物線C交于A、B兩點,且Q4LO3,求證:直線/過定點.
20.(12分)已知圓C的方程為(1-的2+丁2=4.
(1)直線八過點P(3,1),傾斜角為45。,且與圓C交于A,8兩點,求45的長;
(2)求過點P(3,1)且與圓C相切的直線b的方程.
21.(12分)已知拋物線。:/=2°%(2>0)的焦點為R,點機)在拋物線上,且的面積為,(。為
坐標(biāo)原點)
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)點A、3是拋物線。上異于原點。的兩點,直線Q4、08的斜率分別為4、k2,若k&=-2,求證:直線A3
恒過定點
22.(10分)中國男子籃球職業(yè)聯(lián)賽(ChineseBasketballAssociation),簡稱中職籃(CBA),由中國國家體育總局籃球
運動管理中心舉辦的男子職業(yè)籃球賽事,旨在全面提高中國籃球運動水平,其中誕生了姚明、王治郅、易建聯(lián)、朱芳
雨等球星.該比賽分為常規(guī)賽和季后賽.由于新冠疫情關(guān)系,某年聯(lián)賽采用賽會制:所有球隊集中在同一個地方比賽,
分兩個階段進行,每個階段采用循環(huán)賽,分主場比賽和客場比賽,積分排名前8球隊進入季后賽.下表是A隊在常規(guī)
賽60場比賽中的比賽結(jié)果記錄表.
階段比賽場數(shù)主場場數(shù)獲勝場數(shù)主場獲勝場數(shù)
第一階段30152010
第二階段30152515
(1)根據(jù)表中數(shù)據(jù),完成下面2x2列聯(lián)表:
A隊勝A隊負(fù)合計
主場5
客場20
合計60
(2)根據(jù)(1)中2x2列聯(lián)表,判斷是否有90%的把握認(rèn)為比賽的“主客場”與“勝負(fù)”之間有關(guān)?
n[ad-bcf
(a+b)(c+d)(a+c)(b+d)
P(K->k)0.1000.0500.025
k2.7063.8415.024
參考答案
一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。
1、B
【解析】畫出圖形,利用已知條件結(jié)合拋物線的定義求解邊長CRBK,然后求解三角形的面積即可
【詳解】如圖,設(shè)拋物線的準(zhǔn)線為/,過A作AM,/于過B作BN上1于N,過3作于K,
設(shè)忸同=m,則根據(jù)拋物線的定義可得忸N|=m,\AF\=\AM\=3m,\AB\=4m,
|=2m,cosNBAM=——=—=>/BAM=60,|CF|=p=—m=3,m=2,二忸K[=2sf3m=4s/3,
AB22
:.ABC的面積為S=Se+SBCF=g-|CF|-忸K|=673,
【解析】由兩直線平行確定參數(shù)值,根據(jù)充分必要條件的定義判斷
【詳解】。=1時,兩直線方程分別為x+2y-1=0,x+2y-1=0,它們重合,不平行,因此不是充分條件;
反之,兩直線平行時,a(a+l)—2=0,解得。=1或a=—2,
由上知。=1時,兩直線不平行,
a=—2時,兩直線方程分別為—2x+2y—1=0,%—y—4=0,平行,
因此a=-2,本題中也不是必要條件
故選:D
3、A
【解析】由兩直線垂直可得出關(guān)于實數(shù)。的等式,即可解得實數(shù)。的值.
【詳解】因為丸,/2,則a+a(a—2)=a(a—1)=0,解得a=0或1.
故選:A.
4、D
cl
【解析】設(shè)由區(qū)|=2c,先求出點P((l+百)c,c),得°+理+JZ,化簡即得解
【詳解】由題意可知橢圓的焦點在x軸上,如圖所示,設(shè)比閶=2c,則|0閶=°,
?.?△P片乙為等腰三角形,且/4心尸=150。,
尸閭=閨司=2c.
過P作PE垂直x軸于點£,則NP8E=30。,
:.\F2E\=43C,\PE\=C,即點P((l+若卜,cj.
V點P在過點A且斜率為-的直線上,
4
C1QR
???砰即J,解得
3+73
6
故選:D
【點睛】方法點睛:求橢圓的離心率常用的方法有:(1)公式法(求出橢圓的。,c代入離心率的公式即得解);(2)方
程法(通過已知找到關(guān)于離心率的方程解方程即得解).
5、D
【解析】由向量數(shù)量積的坐標(biāo)運算求得數(shù)量積,模,結(jié)合向量的共線定義判斷
【詳解】由已知,卜爐百奇=逐,|^|=7(-2)2+02+12=75,
a-b=lx(-2)+2x0+0xl=-2,b與a不垂直
若b=ka,則0=2左,k=0,但是,IwOxO,因此匕與。不共線
故選:D
6、A
【解析】根據(jù)〃〃人得出根據(jù)充分必要條件的定義可判斷.
【詳解】解::a〃Z?,向量8=(x,l),b=(4,x),
**.x2—4=0,即x=±2,
根據(jù)充分必要條件的定義可判斷:
“九=2”是//b”的充分不必要條件,
故選:A.
7、D
【解析】根據(jù)兩向量平行可求得X、y的值,即可得出合適的選項.
—3%=556
【詳解】由已知L,解得%=—彳,y==,則孫=—2.
5y=635
故選:D.
8、D
【解析】求出函數(shù)的導(dǎo)函數(shù),設(shè)切點為(天,e與+1),依題意即過切點的切線恰好與直線尤-丁-2=0平行,此時切點
到直線的距離最小,求出切點坐標(biāo),再利用點到直線的距離公式計算可得;
【詳解】解:因為y=e*+l,所以y'=e',設(shè)切點為則力/=田=1,解得%=0,所以切點為(0,2),
點(0,2)到直線無一y-2=0的距離d=擊=20,所以曲線丁=e'+1上的點到直線無一y-2=0的距離的最小值
是2e;
故選:D
9、C
【解析】根據(jù)空間向量垂直與平行的坐標(biāo)表示,求得羽y的值,得到向量。+6=(2,-1,2),進而求得,+目,得到答
案.
【詳解】由題意,向量a=(x,l,l),b=(l,y,l),c=(2,T,2),
因為o_l_c,可得a?c=2x—4+2=0,解得九=1,即a=
又因為6〃c,可得g=解得y=-2,即〃=(1,—2,1),
可得a+人=(1,1,1)+(1,-2,1)=(2,-1,2),所以,+0=J4+1+4=3.
故選:C.
10、D
【解析】根據(jù)向量共面基本定理只需[=無解即可滿足{a,'c}構(gòu)成空間向量基底,據(jù)此檢驗各選項即可得
解.
【詳解】因為c=(—2,1,4)=-匕,所以A中的向量,不能與b構(gòu)成基底;
因為c=(l,L—1)=。+匕,所以B中的向量°不能與a,8構(gòu)成基底;
—X+2y=-8,
對于c=(—8,7,18),^c=xa+yb,則(2x—y=7,,解得x=2,y=—3,
3X-4V=18
所以c=2a-3b,故a,b>c為共面向量,所以C中的向量c不能與a,b構(gòu)成基底;
—x+2y=-1,
對于c=(一1,2,T),設(shè)C=xa+y6,則2x-y=2,,此方程組無解,所以八,不共面,故D中的向量c與
3x-4y=-4
a,可以構(gòu)成基底.
故選:D
11、C
【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,即可得答案.
【詳解】由題可知,圓的標(biāo)準(zhǔn)方程為(x—1)?+(丁+2)2=9,
所以圓心為(L-2),半徑為3,
故選C.
12、A
【解析】先求出抽到的兩名醫(yī)生性別相同的事件的概率,再求抽到的兩名醫(yī)生都是女醫(yī)生事件的概率,然后代入條件
概率公式即可
C2+C293C231
【詳解】解:由已知得P(A)=*;L=5T=5,P(AB)=U=方=亍,
乙A/V?-7乙J./
1
則P(四A)=今普
J-3
7
故選:A
【點睛】此題考查條件概率問題,屬于基礎(chǔ)題
二、填空題:本題共4小題,每小題5分,共20分。
13,[1,4]
【解析】根據(jù)小A3的面積和短軸長得出“,b,c的值,從而得出|尸客|的范圍,得到西+而關(guān)于忸叫的函數(shù),
從而求出答案
【詳解】由已知得23=2,故〃=1,?.?△占A3的面積為二二8,
2
—c)Z?=2',a—c—2—yj3?又a?—c?=(Q—C)(Q+C)=/??=],
..“=2,°=G??西西一附||叫|明(4-附I)-附『+4|*'
又2—6<|尸耳歸2+百,二1<—歸片「+4歸用<4,
1II/
?1<-----+-----<4
..一版|\PF2\~
11「、
即國+西的取值范圍為[1,4].
故答案為[1,4]
點睛】本題考查了橢圓的簡單性質(zhì),函數(shù)最值的計算,熟練掌握橢圓的基本性質(zhì)是解題的關(guān)鍵,屬于中檔題
14、30
【解析】利用分層抽樣可求得”的值,再利用分層抽樣可求得高二被抽取的人數(shù).
2400
【詳解】高一年級抽取的人數(shù)為:90x—...............=36人,貝!|〃=1600,
2400+2000+71
2000
則高二被抽取的人數(shù)90x=30,
2400+2000+1600
故答案為:30.
15、(2,2,4)
【解析】根據(jù)向量1=(1,3,-2)為平面A3C的一個法向量,由AB.V=O求解.
【詳解】因為A(L-M),5(3,1,4),
所以AB=(2,2,4—。,
又因為向量1=(1,3,-2)為平面ABC的一個法向量,
所以AB-v=lx2+3x2—2x(4—7)=0,
解得1=0,
所以=(2,2,4),
故答案為:(22,4)
45
16、一
512
【解析】先研究一個小球從正上方落下的情況,從而可求出一個小球從正上方落下落到2號位置的概率,進而可求出
5個小球從正上方落下,則恰有3個小球落到2號位置的概率
【詳解】如圖所示,先研究一個小球從正上方落下的情況,11,12,13,14指小球第2層到第3層的線路圖,以此類
推,小球所有的路線情況如下:
01-11-21-31,01-11-21-32,01-11-22-33,01-11-22-34,01-12-23-33,01-12-23-34,01-12-24-35,01-12-24-36,02-14-26-38,
02-14-26-37,02-14-25-35,02-14-25-36,02-13-24-36,02-13-24-35,02-13-23-34,02-13-23-33,共16種情況,其中落
入2號位置的有4種,
41
所以每個球落入2號位置的概率為一=一,
164
所以5個小球從正上方落下,則恰有3個小球落到2號位置的概率為
故答案為:——
三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。
17、(1)證明見解析
(2)S?=(4?-7)-2/,+1+14
an11.1
【解析】(1)化簡%+1=丁'得到--------=4,由此證得數(shù)列一為等差數(shù)列.
4a“+1an+lana
(2)先求得然后利用錯位相減求和法求得S”.
【小問1詳解】
=,J_=4+J_,J_1,1
一=4.又一=1
44+1an+iana,+i
數(shù)列!是以1為首項,4為公差等差數(shù)列.
【小問2詳解】
由(1)知:—=1+4(/?-1)=4H-3,
an
則數(shù)列{??}的通項公式為an=:/,則g=(4〃—3)?2",
S?=21+5X22+9X23++(4n-3)-2n0,
2S?=22+5X23+9X24++(4〃-3>2用②,
①-②得:—S.=2+4(2?+23++2")—(4〃—3>2"+i,
-Sn=2+"(I2)_(4〃_3).2"+i,
n1-217
,,+1n+1
-Sn=2-16+4-2-(4?-3)-2,
-S?=-14+(7-4zz)-2/,+1,
ra+1
Sn=(4n-7)-2+14.
18、(1)不在(2)17.5米
【解析】(1)以。為原點,正東方向為x軸正方向建立如圖所示的直角坐標(biāo)系,求出直線A3方程,判斷直線A3與
圓。的位置關(guān)系即可;
(2)攝像頭監(jiān)控不會被建筑物遮擋,只需求出過點A的直線/與圓。相切時的直線方程即可.
【小問1詳解】
以。為原點,正東方向為x軸正方向建立如圖所示的直角坐標(biāo)系
則0(0,0),4(20,20),觀景直道所在直線的方程為y=-10
依題意得:游客所在點為5(-5,0)
則直線A3的方程為噌=蕓三,化簡得4x—5y+20=0,
|20|20,
所以圓心。到直線AB的距離d==i—<4,
%+52A/41
故直線A3與圓O相交,
所以游客不在該攝像頭監(jiān)控范圍內(nèi).
【小問2詳解】
由圖易知:過點A的直線/與圓。相切或相離時,攝像頭監(jiān)控不會被建筑物遮擋,
所以設(shè)直線/過A且恰與圓0相切,
①若直線/垂直于x軸,則/不可能與圓。相切;
②若直線/不垂直于x軸,設(shè)/:y-20=左(%-20),整理得Ax-y-20左+2。=0
|-204+20|,34
所以圓心O到直線I的距離為dJ=y◎+[-=4,解得&=z或左=§,
34
所以直線/的方程為y—20=\(x—20)或y—20=§(x—20),
即3x—4y+20=0或4x—3y—20=0,
設(shè)這兩條直線與丁=-10交于。,E
y=—10y=-10
由<,解得x=—20,由<14…-2。=。'解得戶一25
[3x—4y+20=0
所以|£>同=17.5,
觀景直道不在該攝像頭的監(jiān)控范圍內(nèi)的長度為17.5米.
攝像頭
19、(1)y2=8x
(2)證明見解析
【解析】(1)求出雙曲線的漸近線方程,由點到直線距離公式可得參數(shù)。值得拋物線方程;
(2)設(shè)直線方程為x=+直線方程代入拋物線方程后應(yīng)用韋達定理得%+%,%%,代入
。4?03=0可得加值,得定點坐標(biāo)
【小問1詳解】
已知雙曲線的一條漸近線方程為,=石丁,即x-石y=0,
P\P-Q\
拋物線的焦點為(上,0),所以2],解得。=4(因為。>0),
2E=i
所以拋物線方程為V=8x;
【小問2詳解】
由題意設(shè)直線I方程為x=ty+m,設(shè)A&,%),5(x2,%)
x=ty+m
由《2得y-89-8m=0,弘+%=8,,%%=一8機,
y=Sx
又Q4JLOB,所以。4。8=西%2+%%=0,
所以再%2+=(。1+加)(。2+m)+必%=(1++儂(必+%)+加之
=-8m(l+r2)+8r2m+m2=0,直線不過原點,mwO,所以羽=8
所以直線/過定點(8,0)
20、(1)。
(2)x=3或3x+4y-13=0
【解析】(i)首先利用點斜式求出直線4的方程,再利用點到直線的距離公式求出圓心到直線的距離,最后利用垂直
定理、勾股定理計算可得;
(2)依題意可得點P在圓外,分直線的斜率存在與不存在兩種情況討論,當(dāng)直線的斜率不存在直線得到直線方程,但
直線的斜率存在時設(shè)直線方程為y-i=Hx-3),利用點到直線的距離公式得到方程,解得左,即可得解;
【小問1詳解】
解:根據(jù)題意,直線4的方程為y-l=lx(x-3),即x-y-2=0,
則圓心(1,0)到直線4的距離為d=?總=—
V1+12
故|=2A/22—d2=2J4—g=V14;
【小問2詳解】
解:根據(jù)題意,點P在圓外,分兩種情況討論:
當(dāng)直線。的斜率不存在時,過點P(3,l)的直線方程是x=3,
此時4與圓C:(x—l『+y2=4相切,滿足題意;
當(dāng)直線4的斜率存在時,設(shè)直線方程為y-1=左(%-3),
即辰_y_3A+l=0,
/、|-2左+1|
直線與圓相切時,圓心(1,0)到直線的距離為卜危=2
3
解得上=_
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 光的反射(教學(xué)設(shè)計)-2024-2025學(xué)年科學(xué)五年級上冊人教鄂教版
- 2025年甘肅省蘭州市單招職業(yè)適應(yīng)性測試題庫完整版
- 2025年河南女子職業(yè)學(xué)院單招職業(yè)傾向性測試題庫學(xué)生專用
- 2025年湖北生態(tài)工程職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性測試題庫必考題
- 2025年度公司獨家簽約帶貨主播合作協(xié)議
- 寵物醫(yī)院裝修全包合同細(xì)則
- 2025年度數(shù)字經(jīng)濟平臺運營人員聘用協(xié)議
- 2025年度美容美發(fā)門店聯(lián)營合作合同
- 農(nóng)村茶藝館裝修合同模板
- 2025年度手房買賣意向金支付與房屋交易風(fēng)險控制合同
- 失智老年人照護X證書制度試點工作養(yǎng)老護理職業(yè)和失智老人照護員工種的發(fā)展講解
- 2025年湖南食品藥品職業(yè)學(xué)院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 企業(yè)數(shù)字化轉(zhuǎn)型戰(zhàn)略-深度研究
- 新種子法律法規(guī)培訓(xùn)講解
- 2025年東營科技職業(yè)學(xué)院高職單招數(shù)學(xué)歷年(2016-2024)頻考點試題含答案解析
- 2025-2030年中國民用通信天線行業(yè)發(fā)展趨勢規(guī)劃研究報告
- 《幼小銜接家長會》課件
- 浙江省金華市婺城區(qū)2024-2025學(xué)年九年級上學(xué)期期末數(shù)學(xué)試卷(含答案)
- Unit 4 A glimpse of the future 說課稿-2023-2024學(xué)年高二下學(xué)期英語外研版(2019)選擇性必修第三冊001
- 鄉(xiāng)村建設(shè)規(guī)劃許可培訓(xùn)
- 加氣站安全課件
評論
0/150
提交評論