湖北省隨州市曾都區(qū)實驗中學2023-2024學年九年級數(shù)學第一學期期末監(jiān)測試題含解析_第1頁
湖北省隨州市曾都區(qū)實驗中學2023-2024學年九年級數(shù)學第一學期期末監(jiān)測試題含解析_第2頁
湖北省隨州市曾都區(qū)實驗中學2023-2024學年九年級數(shù)學第一學期期末監(jiān)測試題含解析_第3頁
湖北省隨州市曾都區(qū)實驗中學2023-2024學年九年級數(shù)學第一學期期末監(jiān)測試題含解析_第4頁
湖北省隨州市曾都區(qū)實驗中學2023-2024學年九年級數(shù)學第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省隨州市曾都區(qū)實驗中學2023-2024學年九年級數(shù)學第一學期期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.在0,1,2三個數(shù)中任取兩個,組成兩位數(shù),則在組成的兩位數(shù)中是奇數(shù)的概率為()A. B. C. D.2.木桿AB斜靠在墻壁上,當木桿的上端A沿墻壁NO豎直下滑時,木桿的底端B也隨之沿著射線OM方向滑動.下列圖中用虛線畫出木桿中點P隨之下落的路線,其中正確的是()A. B.C. D.3.若反比例函數(shù)y=(k≠0)的圖象經過點(﹣4,),則下列點在該圖象上的是()A.(﹣5,2) B.(3,﹣6) C.(2,9) D.(9,2)4.現(xiàn)有四張分別標有數(shù)字﹣2,﹣1,1,3的卡片,它們除數(shù)字外完全相同,把卡片背面朝上洗勻,從中隨機抽取一張卡片,記下數(shù)字后放回,洗勻,再隨機抽取一張卡片,則第一次抽取的卡片上的數(shù)字大于第二次抽取的卡片上的數(shù)字的概率是()A. B. C. D.5.拋物線上部分點的橫坐標、縱坐標的對應值如下表:…-3-2-101……-60466…容易看出,是它與軸的一個交點,那么它與軸的另一個交點的坐標為()A. B. C. D.6.在Rt△ABC中,∠C=90°,、、所對的邊分別為a、b、c,如果a=3b,那么∠A的余切值為()A. B.3 C. D.7.已知的半徑為,點到圓心的距離為,則點和的位置關系是()A.點在圓內 B.點在圓上 C.點在圓外 D.不能確定8.圖2是圖1中長方體的三視圖,若用表示面積,則()A. B. C. D.9.已知反比例函數(shù),當x>0時,y隨x的增大而增大,則k的取值范圍是()A.k>0 B.k<0 C.k≥1 D.k≤110.將二次函數(shù)的圖象先向右平移2個單位長度,再向上平移3個單位長度,下列關于平移后所得拋物線的說法,正確的是()A.開口向下 B.經過點 C.與軸只有一個交點 D.對稱軸是直線11.如圖,正方形的邊長為4,點在的邊上,且,與關于所在的直線對稱,將按順時針方向繞點旋轉得到,連接,則線段的長為()A.4 B. C.5 D.612.若關于的一元二次方程有實數(shù)根,則實數(shù)m的取值范圍是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,扇形紙扇完全打開后,外側兩竹條AB,AC夾角為150°,AB的長為18cm,BD的長為9cm,則紙面部分BDEC的面積為_____cm1.14.如圖,點B,A,C,D在⊙O上,OA⊥BC,∠AOB=50°,則∠ADC=.15.如圖,四邊形ABCD中,AB∥CD,∠B=90°,AB=1,CD=2,BC=3,點P為BC邊上一動點,若△PAB與△PCD是相似三角形,則BP的長為_____________16.如圖,在邊長為2的菱形ABCD中,,點E、F分別在邊AB、BC上.將BEF沿著直線EF翻折,點B恰好與邊AD的中點G重合,則BE的長等于________.17.點向左平移兩個單位后恰好位于雙曲線上,則__________.18.如圖,正方形OABC與正方形ODEF是位似圖形,O為位似中心,相似比為1:,點A的坐標為(1,0),則四邊形ODEF的面積為_____.三、解答題(共78分)19.(8分)如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標為(3,0),經過A點的直線交拋物線于點D(2,3).(1)求拋物線的解析式和直線AD的解析式;(2)過x軸上的點E(a,0)作直線EF∥AD,交拋物線于點F,是否存在實數(shù)a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.20.(8分)計算:(1);(2)先化簡,再求值.,其中a=2020;21.(8分)如圖,AB是⊙O的一條弦,點C是半徑OA的中點,過點C作OA的垂線交AB于點E,且與BE的垂直平分線交于點D,連接BD.(1)求證:BD是⊙O的切線;(2)若⊙O的半徑為2,CE=1,試求BD的長.22.(10分)如圖,在△ABC中,點D是邊AB上的一點,∠ADC=∠ACB.(1)證明:△ADC∽△ACB;(2)若AD=2,BD=6,求邊AC的長.23.(10分)已知正比例函數(shù)y=kx與比例函數(shù)的圖象都過點A(m,1).求:(1)正比例函數(shù)的表達式;(2)正比例函數(shù)圖象與反比例數(shù)圖象的另一個交點的坐標.24.(10分)如圖,已知二次函數(shù)與軸交于兩點(點在點的左邊),與軸交于點.(1)寫出兩點的坐標;(2)二次函數(shù),頂點為.①直接寫出二次函數(shù)與二次函數(shù)有關圖象的兩條相同的性質;②是否存在實數(shù),使為等邊三角形?如存在,請求出的值;如不存在,請說明理由;③若直線與拋物線交于兩點,問線段的長度是否發(fā)生變化?如果不會,請求出的長度;如果會,請說明理由.25.(12分)某廣告公司設計一幅周長為16米的矩形廣告牌,廣告設計費為每平方米2000元.設矩形一邊長為x,面積為S平方米.(1)求S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;(2)設計費能達到24000元嗎?為什么?(3)當x是多少米時,設計費最多?最多是多少元?26.已知拋物線y=x2+mx+n與x軸交于點A(﹣1,0),B(2,0)兩點.(1)求拋物線的解析式;(2)當y<0時,直接寫出x的取值范圍是.

參考答案一、選擇題(每題4分,共48分)1、A【分析】列舉出所有情況,看兩位數(shù)中是奇數(shù)的情況占總情況的多少即可.【詳解】解:在0,1,2三個數(shù)中任取兩個,組成兩位數(shù)有:12,10,21,20四個,是奇數(shù)只有21,所以組成的兩位數(shù)中是奇數(shù)的概率為.故選A.【點睛】數(shù)目較少,可用列舉法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、D【解析】解:如右圖,連接OP,由于OP是Rt△AOB斜邊上的中線,所以OP=AB,不管木桿如何滑動,它的長度不變,也就是OP是一個定值,點P就在以O為圓心的圓弧上,那么中點P下落的路線是一段弧線.故選D.3、B【分析】根據(jù)反比例函數(shù)y=(k≠0)的圖象經過點(﹣4,)求出k的值,進而根據(jù)在反比例函數(shù)圖像上的點的橫縱坐標的積應該等于其比例系數(shù)對各選項進行代入判斷即可.【詳解】∵若反比例函數(shù)y=(k≠0)的圖象經過點(﹣4,),∴k=﹣4×=﹣18,A:,故不在函數(shù)圖像上;B:,故在函數(shù)圖像上;C:,故不在函數(shù)圖像上;D:,故不在函數(shù)圖像上.故選:B.【點睛】本題主要考查了反比例函數(shù)圖像上點的坐標特征,求出k的值是解題關鍵.4、B【分析】畫樹狀圖得出所有等可能結果,從找找到符合條件得結果數(shù),在根據(jù)概率公式計算可得.【詳解】畫樹狀圖如下:由樹狀圖知共有16種等可能結果,其中第一次抽取的卡片上的數(shù)字大于第二次抽取的卡片上的數(shù)字的有6種結果,所以第一次抽取的卡片上的數(shù)字大于第二次抽取的卡片上的數(shù)字的概率為.故選B.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、C【分析】根據(jù)(0,6)、(1,6)兩點求得對稱軸,再利用對稱性解答即可.【詳解】∵拋物線經過(0,6)、(1,6)兩點,∴對稱軸x==;點(?2,0)關于對稱軸對稱點為(3,0),因此它與x軸的另一個交點的坐標為(3,0).故選C.【點睛】本題考查了二次函數(shù)的對稱性,解題的關鍵是求出其對稱軸.6、A【分析】根據(jù)銳角三角函數(shù)的定義,直接得出cotA=,即可得出答案.【詳解】解:在Rt△ABC中,∠C=90°,a=3b,∴;故選擇:A.【點睛】此題主要考查了銳角三角函數(shù)的定義,熟練地應用銳角三角函數(shù)的定義是解決問題的關鍵.7、B【解析】根據(jù)點與圓的位置關系進行判斷.【詳解】∵⊙O的半徑為6cm,P到圓心O的距離為6cm,

即OP=6,

∴點P在⊙O上.

故選:B.【點睛】本題考查了點與圓的位置關系:點與圓的位置關系有3種,設⊙O的半徑為r,點P到圓心的距離OP=d,則有:點P在圓外?d>r;點P在圓上?d=r;點P在圓內?d<r.8、A【分析】由主視圖和左視圖的寬為x,結合兩者的面積得出俯視圖的長和寬,從而得出答案.【詳解】∵S主=x1+1x=x(x+1),S左=x1+x=x(x+1),∴俯視圖的長為x+1,寬為x+1,則俯視圖的面積S俯=(x+1)(x+1)=x1+3x+1.故選A.【點睛】本題考查了由三視圖判斷幾何體,解題的關鍵是根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側面的形狀,以及幾何體的長、寬、高.9、B【分析】根據(jù)反比例函數(shù)的性質,當x>0時,y隨x的增大而增大得出k的取值范圍即可.【詳解】解:∵反比例函數(shù)中,當x>0時,y隨x的增大而增大,∴k<0,故選:B.【點睛】本題考查的是反比例函數(shù)的性質,反比例函數(shù)(k≠0)中,當k>0時,雙曲線的兩支分別位于第一、三象限,在每一象限內y隨x的增大而減?。划攌<0時,雙曲線的兩支分別位于第二、四象限,在每一象限內y隨x的增大而增大.10、C【分析】根據(jù)二次函數(shù)圖象和性質以及二次函數(shù)的平移規(guī)律,逐一判斷選項,即可得到答案.【詳解】∵二次函數(shù)的圖象先向右平移2個單位長度,再向上平移3個單位長度,∴平移后的二次函數(shù)解析式為:,∵2>0,∴拋物線開口向上,故A錯誤,∵,∴拋物線不經過點,故B錯誤,∵拋物線頂點坐標為:(2,0),且開口向上,∴拋物線與軸只有一個交點,故C正確,∵拋物線的對稱軸為:直線x=2,∴D錯誤.故選C.【點睛】本題主要考查二次函數(shù)的圖象和性質以及平移規(guī)律,掌握“左加右減,上加下減”是解題的關鍵.11、C【分析】如圖,連接BE,根據(jù)軸對稱的性質得到AF=AD,∠EAD=∠EAF,根據(jù)旋轉的性質得到AG=AE,∠GAB=∠EAD.求得∠GAB=∠EAF,根據(jù)全等三角形的性質得到FG=BE,根據(jù)正方形的性質得到BC=CD=AB=1.根據(jù)勾股定理即可得到結論.【詳解】解:如圖,連接BE,∵△AFE與△ADE關于AE所在的直線對稱,∴AF=AD,∠EAD=∠EAF,∵△ADE按順時針方向繞點A旋轉90°得到△ABG,∴AG=AE,∠GAB=∠EAD.∴∠GAB=∠EAF,∴∠GAB+∠BAF=∠BAF+∠EAF.∴∠GAF=∠EAB.∴△GAF≌△EAB(SAS).∴FG=BE,∵四邊形ABCD是正方形,∴BC=CD=AB=1.∵DE=1,∴CE=2.∴在Rt△BCE中,BE=,∴FG=5,故選:C.【點睛】本題考查了正方形的性質,勾股定理,全等三角形的判定與性質以及旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.12、B【分析】因為一元二次方程有實數(shù)根,所以,即可解得.【詳解】∵一元二次方程有實數(shù)根∴解得故選B【點睛】本題考查一元二次方程根的判別式,掌握方程根的個數(shù)與根的判別式之間關系是解題關鍵.二、填空題(每題4分,共24分)13、【分析】貼紙部分的面積可看作是扇形BAC的面積減去扇形DAE的面積.【詳解】S=S扇形BAC﹣S扇形DAE==(cm1).故答案是:【點睛】本題考查扇形面積,解題的關鍵是掌握扇形面積公式.14、25°【解析】解:∵OA⊥BC,∴,∴∠ADC=∠AOB=×50°=25°15、1或2【分析】設BP=x,則CP=BC-BP=3-x,易證∠B=∠C=90°,根據(jù)相似三角形的對應頂點分類討論:①若△PAB∽△PDC時,列出比例式即可求出BP;②若△PAB∽△DPC時,原理同上.【詳解】解:設BP=x,則CP=BC-BP=3-x∵AB∥CD,∠B=90°,∴∠C=180°-∠B=90°①若△PAB∽△PDC時∴即解得:x=1即此時BP=1;②若△PAB∽△DPC時∴即解得:即此時BP=1或2;綜上所述:BP=1或2.故答案為:1或2.【點睛】此題考查的是相似三角形的判定及性質,掌握相似三角形的對應邊成比例列方程是解決此題的關鍵.16、【分析】如圖,作GH⊥BA交BA的延長線于H,EF交BG于O.利用勾股定理求出MG,由此即可解決問題.【詳解】過點G作GM⊥AB交BA延長線于點M,則∠AMG=90°,∵G為AD的中點,∴AG=AD==1,∵四邊形ABCD是菱形,∴AB//CD,∴∠MAG=∠D=60°,∴∠AGM=30°,∴AM=AG=,∴MG=,設BE=x,則AE=2-x,∵EG=BE,∴EG=x,在Rt△EGM中,EG2=EM2+MG2,∴x2=(2-x+)2+,∴x=,故答案為.【點睛】本題考查了菱形的性質、軸對稱的性質等,正確添加輔助線構造直角三角形利用勾股定理進行解答是關鍵.17、【分析】首先求出點P平移后的坐標,然后代入雙曲線即可得解.【詳解】點向左平移兩個單位后的坐標為,代入雙曲線,得∴故答案為-1.【點睛】此題主要考查坐標的平移以及雙曲線的性質,熟練掌握,即可解題.18、1【分析】利用位似圖形的性質得出D點坐標,進而求出正方形的面積.【詳解】∵正方形OABC與正方形ODEF是位似圖形,O為位似中心,相似比為1:,點A的坐標為(1,0),∴OA:OD=1:,∵OA=1,∴OD=,∴正方形ODEF的面積為:OD1=×=1.故答案為:1.【點睛】此題主要考查了位似變換以及坐標與圖形的性質,得出OD的長是解題關鍵.三、解答題(共78分)19、(1)y=-x2+2x+3;y=x+1;(2)a的值為-3或.【分析】(1)把點B和D的坐標代入拋物線y=-x2+bx+c得出方程組,解方程組即可;由拋物線解析式求出點A的坐標,設直線AD的解析式為y=kx+a,把A和D的坐標代入得出方程組,解方程組即可;(2)分兩種情況:①當a<-1時,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②當a>-1時,顯然F應在x軸下方,EF∥AD且EF=AD,設F(a-3,-3),代入拋物線解析式,即可得出結果.【詳解】解:(1)把點B和D的坐標代入拋物線y=-x2+bx+c得:解得:b=2,c=3,∴拋物線的解析式為y=-x2+2x+3;當y=0時,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);設直線AD的解析式為y=kx+a,把A和D的坐標代入得:解得:k=1,a=1,∴直線AD的解析式為y=x+1;(2)分兩種情況:①當a<-1時,DF∥AE且DF=AE,則F點即為(0,3),∵AE=-1-a=2,∴a=-3;②當a>-1時,顯然F應在x軸下方,EF∥AD且EF=AD,設F(a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=;綜上所述,滿足條件的a的值為-3或.【點睛】本題考查拋物線與x軸的交點;二次函數(shù)的性質;待定系數(shù)法求二次函數(shù)解析式及平行四邊形的判定,綜合性較強.20、(1);(2),1.【分析】(1)把分式方程化為整式方程,即可求解;(2)根據(jù)分式的運算法則進行化簡,再代入a即可求解.【詳解】解:(1)去分母得:解得:檢驗:當時,∴是原分式方程的解;(2)=當時,原式=1.【點睛】此題主要考查分式方程與分式化簡求值,解題的關鍵是熟知其運算法則.21、(1)見解析;(2)1【分析】(1)連接OB,由圓的半徑相等和已知條件證明∠OBD=90°,即可證明BD是⊙O的切線;(2)根據(jù)三角函數(shù)的定義得到,求得∠A=30°,得到∠DEB=∠AEC=60°,推出△DEB是等邊三角形,得到BE=BD,設EF=BF=x,求得AB=2x+2,過O作OH⊥AB于H,解直角三角形即可得到結論.【詳解】(1)證明:連接OB,∵OB=OA,DE=DB,∴∠A=∠OBA,∠DEB=∠ABD,又∵CD⊥OA,∴∠A+∠AEC=∠A+∠DEB=90°,∴∠OBA+∠ABD=90°,∴OB⊥BD,∴BD是⊙O的切線;(2)解:∵⊙O的半徑為,點C是半徑OA的中點,∴,∵CE=1,∴,∴∠A=30°,∵∠ACE=90°,∴∠DEB=∠AEC=60°,∵DF垂直平分BE,∴DE=DB,∴△DEB是等邊三角形,∴BE=BD,設EF=BF=x,∴AB=2x+2,過O作OH⊥AB于H,∴AH=BH=x+1,∵,∴,∴AB=6,∴BD=BE=AB﹣AE=1.【點睛】本題考查了切線的判定定理,三角函數(shù),等邊三角形的性質以及解直角三角形,解決本題的關鍵是熟練掌握切線的判定方法,能夠熟記特殊角的銳角函數(shù)值,給出三角函數(shù)值能夠推出角的度數(shù),要正確理解直角三角形中邊角的關系22、(1)見解析;(2)1.【分析】(1)根據(jù)兩角對應相等的兩個三角形相似即可證明;(2)利用相似三角形的對應邊對應成比例列式求解即可.【詳解】(1)證明:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB.(2)解:∵△ADC∽△ACB,∴=,AB=AD+DB=2+6=8∴AC2=AD?AB=2×8=16,∵AC>0,∴AC=1.【點睛】本題考查了相似三角形的判定與性質:在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.靈活運用相似三角形的性質進行幾何計算.23、(-3,-1)【解析】把A的坐標分別代入函數(shù)的表達式求解,解由它們組成的方程組即可得解.解:(1)因為y=kx與都過點A(m,1)所以解得所以正正函數(shù)表達式為(2)由得所以它們的另一個交點坐標為(-3,-1).24、(1);(2)①對稱軸都為直線或頂點的橫坐標為2;都經過兩點;②存在實數(shù),使為等邊三角形,;③線段的長度不會發(fā)生變化,值為1.【分析】(1)令,求出解集即可;(2)①根據(jù)二次函數(shù)與有關圖象的兩條相同的性質求解即可;②根據(jù),可得到結果;③根據(jù)已知條件列式,求出定值即可證明.【詳解】解:(1)令,∴,∴,,∵點在點的左邊,∴;(2)①二次函數(shù)與有關圖象的兩條相同的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論