圖像檢索中相關(guān)反饋的半監(jiān)督主動(dòng)學(xué)習(xí)研究的中期報(bào)告_第1頁(yè)
圖像檢索中相關(guān)反饋的半監(jiān)督主動(dòng)學(xué)習(xí)研究的中期報(bào)告_第2頁(yè)
圖像檢索中相關(guān)反饋的半監(jiān)督主動(dòng)學(xué)習(xí)研究的中期報(bào)告_第3頁(yè)
圖像檢索中相關(guān)反饋的半監(jiān)督主動(dòng)學(xué)習(xí)研究的中期報(bào)告_第4頁(yè)
圖像檢索中相關(guān)反饋的半監(jiān)督主動(dòng)學(xué)習(xí)研究的中期報(bào)告_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

圖像檢索中相關(guān)反饋的半監(jiān)督主動(dòng)學(xué)習(xí)研究的中期報(bào)告AbstractThisreportpresentstheprogressofourresearchonsemi-supervisedactivelearningwithrelevantfeedbackforimageretrieval.Imageretrievalhasbecomeoneofthemostimportantapplicationsinthefieldofcomputervisionduetotheincreasingnumberofimagesavailableinvariousdomains.However,theperformanceofimageretrievalalgorithmsheavilyreliesonthequalityoftheannotatedtrainingdatasincemanualannotationisatime-consumingandlabor-intensivetask.Toaddressthisissue,activelearninghasbeenproposedtoautomaticallyselectthemostinformativesamplesforannotation.Meanwhile,relevantfeedbackfromuserscanbeincorporatedintoactivelearningtofurtherenhancetheperformanceofimageretrievalsystems.Inthisreport,wereviewrelatedworkonsemi-supervisedactivelearningandrelevantfeedback,anddiscussourproposedmethodsandpreliminaryexperimentalresults.IntroductionImageretrievalhasbeenwidelyusedinmanyfields,suchase-commerce,socialmedia,andvideosurveillance.However,thequalityofimageretrievalalgorithmsreliesheavilyontheavailabilityandqualityofannotatedtrainingdata.Manualannotationisatime-consumingandlabor-intensivetask,whichmakesitdifficulttoscaleuptolargedatasets.Inaddition,theannotationqualitymaybeinconsistentduetodifferentannotatorsorsubjectivecriteria.Toaddresstheseissues,activelearninghasbeenproposedtoautomaticallyselectthemostinformativesamplesforannotation.Activelearningisaniterativeprocessthatstartswithasmalllabeleddatasetandgraduallyexpandsittoreducetheannotationcostwhilemaintainingorevenimprovingtheperformanceofthemodel.Thekeyideaistoselectthesamplesthataremostinformativeforthemodel'straining,i.e.,thesamplesthatthemodelismostuncertainorconfidentbutwrongabout.Therearevariousselectioncriteriaforactivelearning,suchasuncertaintysampling,diversity,density,andrepresentativeness.However,activelearningonlyconsiderstheintrinsicpropertiesofthesamplesandignorestheadditionalinformationthatexternalsourcescouldprovide.Relevantfeedbackfromusers,suchasrelevancefeedback,preferencefeedback,orsimilarityfeedback,canbeveryvaluableforimageretrievalsinceitcapturestheusers'subjectivepreferencesandinterests.Incorporatingrelevantfeedbackintoactivelearningcouldfurtherimprovetheimageretrievalperformanceandreducetheannotationcost.Therefore,thecombinationofactivelearningandrelevantfeedbackhasattractedconsiderableattentioninrecentyears.Inthisreport,wereviewrelatedworkonsemi-supervisedactivelearningandrelevantfeedbackforimageretrievalanddiscussourproposedmethodsandpreliminaryexperimentalresults.RelatedWorkActivelearninghasbeenwidelystudiedinthefieldofmachinelearningandhasbeenappliedtovarioustasks,suchasclassification,regression,andclustering.Inactivelearning,themodelistrainedonasmalllabeleddatasetandthenselectsthemostinformativesamplesforannotation.Theselectioncriteriaaimtomaximizethegaininmodelperformancewithalimitedannotationbudget.Themostcommonselectioncriteriaareuncertaintysampling,diversitysampling,densitysampling,andrepresentativenesssampling.Uncertaintysamplingselectsthesamplesforwhichthemodel'spredictionismostuncertain,i.e.,thesampleswiththehighestentropyormargin.Diversitysamplingselectsthesamplesthataremostdissimilarfromtheexistinglabeledsamples,i.e.,thesampleswiththelowestdistanceormaximumdiversity.Densitysamplingselectsthesamplesinthesparseregionsofthefeaturespace,i.e.,thesampleswiththelowestdensityormaximumdensity.Representativenesssamplingselectsthesamplesthataremostrepresentativeoftheunderlyingdistributionofthedata,i.e.,thesampleswiththemaximumdisagreementorconsensus.Activelearninghasbeenappliedtoimageretrievalaswell.Themostcommonapproachistousethequery-by-committee(QBC)method,whichtrainsmultipleclassifiersontheavailablelabeleddataandselectsthesamplesforwhichtheclassifiersdisagreethemost.However,QBCmaysufferfromthediversityproblem,wheretheclassifiersarebiasedtowardsacertainsubsetofthedataandcannotcapturetheentireunderlyingdistribution.Toaddressthisissue,somemethodshavebeenproposedtoincorporatediversityorrepresentativenessintoactivelearningforimageretrieval.Relevantfeedbackhasalsobeenwidelystudiedinthefieldofinformationretrievalandhasbeenappliedtovarioustasks,suchaswebsearch,recommendation,andimageretrieval.Relevantfeedbackcapturestheusers'subjectivepreferencesandinterestsandcanbeusedtorefinethesearchresultsorrecommendersystems.Themostcommontypesofrelevantfeedbackarerelevancefeedback,preferencefeedback,andsimilarityfeedback.Relevancefeedbackaskstheuserstoprovidefeedbackontherelevanceoftheretrievedresults,e.g.,bylabelingthemasrelevantorirrelevant.Preferencefeedbackaskstheuserstoprovidefeedbackonthepreferencesbetweenpairsofitems,e.g.,byindicatingwhichitemismorepreferred.Similarityfeedbackaskstheuserstoprovidefeedbackonthesimilaritybetweenpairsofitems,e.g.,byindicatingwhichpairismoresimilar.Relevantfeedbackhasbeenappliedtoimageretrievalaswell.ThemostcommonapproachistousetheRocchioalgorithm,whichupdatesthequerybasedontherelevantandirrelevantfeedbackandre-rankstheretrievedresults.However,Rocchiomaysufferfromthecold-startproblem,wherethereisnorelevantfeedbackavailableforanewqueryorauser.Toaddressthisissue,somemethodshavebeenproposedtoincorporateactivelearningintorelevantfeedbackforimageretrieval.Semi-supervisedactivelearningwithrelevantfeedbackcombinesactivelearningandrelevantfeedbacktoenhancetheperformanceofimageretrieval.Thekeyideaistousethelabeleddataandtherelevantfeedbacktotrainthemodelandthenselectthemostinformativesamplesforannotation.Theselectioncriteriaaimtomaximizethegaininmodelperformancewithalimitedannotationbudget,giventheavailablerelevantfeedback.Themostcommonapproachesareco-training,multi-viewlearning,andquery-by-committeewithfeedback.Co-trainingtrainsmultipleclassifiersondifferentfeaturesorviewsandthenselectsthesamplesforwhichtheclassifiersdisagreethemost,giventheavailablerelevantfeedback.Multi-viewlearningcombinesmultiplefeaturesorviewsintoaunifiedrepresentationandthenselectsthesamplesthataremostinformativeforeachview,giventheavailablerelevantfeedback.Query-by-committeewithfeedbacktrainsmultipleclassifiersonthelabeleddataandtherelevantfeedbackandthenselectsthesamplesforwhichtheclassifiersdisagreethemost,giventheavailablerelevantfeedback.ProposedMethodsInourresearch,weproposeseveralmethodstoenhancetheperformanceofimageretrievalwithsemi-supervisedactivelearningandrelevantfeedback.Thefirstmethodistoincorporaterepresentationlearningintosemi-supervisedactivelearningandrelevantfeedback.Representationlearningaimstolearnalow-dimensionalrepresentationofthedatathatcapturestheunderlyingstructureandsimilarity.Weusedeepneuralnetworkstolearnsuchrepresentationsandthencombinethemwithactivelearningandrelevantfeedbacktoselectthemostinformativesamplesforannotation.Thesecondmethodistoincorporateclusteringintosemi-supervisedactivelearningandrelevantfeedback.Clusteringaimstogroupsimilarsamplesintoclustersandthenselectthemostrepresentativesamplesforeachcluster.Weusek-meansclusteringtogrouptheunlabeleddataintoclustersandselectthemostinformativesamplesfromeachcluster,giventheavailablerelevantfeedback.Thethirdmethodistoincorporatediversityintosemi-supervisedactivelearningandrelevantfeedback.Diversityaimstoselectthemostrepresentativesamplesthatcovertheentireunderlyingdistribution,ratherthanabiasedsubset.Weusethemaximummarginaldiversitycriteriontoselectthemostdiversesamples,giventheavailablerelevantfeedback.PreliminaryExperimentalResultsWeconductedpreliminaryexperimentsontheCIFAR-10datasettoevaluatetheproposedmethods.TheCIFAR-10datasetconsistsof60,00032x32colorimagesin10classes,with6,000imagesperclass.Werandomlyselected100imagesperclassastheinitiallabeleddataandusedtheremainingimagesastheunlabeleddata.Wecomparedtheproposedmethodswiththerandomsamplingbaseline,wherethesamplesforannotationarerandomlyselected.Theresultsshowthattheproposedmethodsoutperformedtheran

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論