強(qiáng)變分不等式問(wèn)題和廣義變分不等式問(wèn)題解的存在性與例外簇的綜述報(bào)告_第1頁(yè)
強(qiáng)變分不等式問(wèn)題和廣義變分不等式問(wèn)題解的存在性與例外簇的綜述報(bào)告_第2頁(yè)
強(qiáng)變分不等式問(wèn)題和廣義變分不等式問(wèn)題解的存在性與例外簇的綜述報(bào)告_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

強(qiáng)變分不等式問(wèn)題和廣義變分不等式問(wèn)題解的存在性與例外簇的綜述報(bào)告Strongvariationalinequalityproblems(SVIPs)andgeneralizedvariationalinequalityproblems(GVIPs)aretwoimportantclassesofnonlinearmathematicalmodelsthatariseinmanyfieldssuchaseconomics,engineering,physics,andoptimization.Inthisreport,wewillprovideanoverviewoftheexistenceandexceptionalsetofsolutionsforthesetwotypesofproblems.1.StrongVariationalInequalityProblems(SVIPs)Astrongvariationalinequalityproblemisformulatedasfollows:Findavectoru?∈Ksuchthat?A(u?),u?u??+?(u)??(u?)≥0,?u∈K,whereKisanonemptyclosedconvexset,A(u)isaboundedlinearoperatorfromKtoK,and?isacontinuouslydifferentiablefunctiononK.OneimportantpropertyofSVIPsisthattheyhaveauniquesolutionforanynonemptyclosedconvexsetKandanygivenfunction?.ThisisbecauseSVIPsareequivalenttotheminimizationofaconvexfunctionoveraconvexset,whichalwayshasauniqueminimizer.However,theuniquesolutiontoanSVIPmaynotexistinsomecases.Forexample,considertheunitballK={u∈Rn:||u||≤1}andthefunction?(u)=||u||^2.LetA(u)betheidentitymatrix.Then,theSVIPbecomes:Findavectoru?∈Ksuchthat||u?u?||^2?||u?||^2≥0,?u∈K.Itiseasytoseethatthereisnofinitesolutiontothisproblemsincetheleft-handsideisalwaysnonnegativewhiletheright-handsideiszero.WhenthesolutiontoanSVIPexists,theexceptionalsetisalwaysanullset.Thismeansthatthesetofu∈Ksatisfying?A(u),u?u??+?(u)??(u?)<0fortheuniquesolutionu?isasetofmeasurezero.2.GeneralizedVariationalInequalityProblems(GVIPs)AgeneralizedvariationalinequalityproblemisanaturalextensionofanSVIPthatallowsfortheinclusionofnonlinearoperators.Itisformulatedasfollows:Findavectoru?∈Ksuchthat?A(u?),u?u??+?(u)+F(u,u?)??(u?)≥0,?u∈K,whereKisanonemptyclosedconvexset,A(u)isaboundedlinearoperatorfromKtoK,?isacontinuouslydifferentiablefunctiononK,andF(u,u?)isanonlinearoperatorthatsatisfiesthefollowingtwoproperties:(a)F(u,u)≥0forallu∈K;(b)F(u,v)?F(v,u)≥?A(u)?A(v),u?v?forallu,v∈K.Thefirstpropertyensuresthattheproblemiswell-posed,whilethesecondpropertyisamonotonicityconditionthatensurestheexistenceofsolutions.TheexistenceofsolutionstoGVIPsismorechallengingtoestablishduetothepresenceofthenonlinearoperatorF(u,u?).Insomecases,theremaybenosolution,orthesolutionmaynotbeunique.Forexample,considertheunitballK={u∈Rn:||u||≤1}andthefunctions?(u)=||u||^2andF(u,u?)=||u?u?||^4.LetA(u)betheidentitymatrix.Then,theGVIPbecomes:Findavectoru?∈Ksuchthat||u?u?||^2?||u?||^2+||u?u?||^4?||u?u?||^2≥0,?u∈K.Itcanbeshownthatthereisnofinitesolutiontothisproblem.TheexceptionalsetofsolutionsforGVIPsdependsonthestructureoftheproblemandthepropertiesofthenonlinearoperatorF(u,u?).Insomecases,theexceptionalsetisanullset,whileinothercases,itmaybeasetofpositivemeasure.ThestudyofexceptionalsetsforGVIPsisanactiveareaofresearchinnonlinearanalysisandoptimization.Inconclusion,wehaveprovidedanoverviewoftheexistenceandexceptionalsetofsolutionsforstrongvariationalinequalityproblemsandgeneralizedvariationalinequalityproblems.SVIPshaveauniquesolutionforanygivenfunctionandconvexset,whileGVIPsmayhavenosolutionormultiplesolutionsdependingonthepropertiesoftheproblem.TheexceptionalsetforSVIPsisalwaysanullset,whileforGVIPs,itdependsonthestructureoftheproblemandthepr

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論