版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年湖北省十堰市十堰外國語校中考一模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知二次函數(shù)的圖象與軸交于點(diǎn)、,且,與軸的正半軸的交點(diǎn)在的下方.下列結(jié)論:①;②;③;④.其中正確結(jié)論的個(gè)數(shù)是()個(gè).A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)2.如圖是一個(gè)幾何體的主視圖和俯視圖,則這個(gè)幾何體是()A.三棱柱 B.正方體 C.三棱錐 D.長方體3.一個(gè)由圓柱和圓錐組成的幾何體如圖水平放置,其主(正)視圖為()A. B. C. D.4.已知一元二次方程有一個(gè)根為2,則另一根為A.2 B.3 C.4 D.85.若a與5互為倒數(shù),則a=()A. B.5 C.-5 D.6.如圖,O為坐標(biāo)原點(diǎn),四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數(shù)yA.10B.9C.8D.67.下列式子中,與互為有理化因式的是()A. B. C. D.8.-3的倒數(shù)是()A.3 B.13 C.-19.觀察下列圖形,則第n個(gè)圖形中三角形的個(gè)數(shù)是()A.2n+2 B.4n+4 C.4n﹣4 D.4n10.已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是()A.30° B.60° C.30°或150° D.60°或120°11.在2014年5月崇左市教育局舉行的“經(jīng)典詩朗誦”演講比賽中,有11名學(xué)生參加決賽,他們決賽的成績各不相同,其中的一名學(xué)生想知道自己能否進(jìn)入前6名,不僅要了解自己的成績,還要了解這11名學(xué)生成績的()A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差12.下列各式中,互為相反數(shù)的是()A.和 B.和 C.和 D.和二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.化簡:12+31314.函數(shù)y=中,自變量x的取值范圍是________.15.已知梯形ABCD,AD∥BC,BC=2AD,如果AB=a,AC=b,那么DA=_____(用16.如果點(diǎn)A(-1,4)、B(m,4)在拋物線y=a(x-1)2+h上,那么m的值為_____.17.如圖,在△ABC中,∠C=90°,AC=8,BC=6,點(diǎn)D是AB的中點(diǎn),點(diǎn)E在邊AC上,將△ADE沿DE翻折,使點(diǎn)A落在點(diǎn)A′處,當(dāng)A′E⊥AC時(shí),A′B=____.18.我國經(jīng)典數(shù)學(xué)著作《九章算術(shù)》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?(小知識:1丈=10尺)如果設(shè)水深為x尺,則蘆葦長用含x的代數(shù)式可表示為尺,根據(jù)題意列方程為.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(0,1),點(diǎn)C(1,0),正方形AOCD的兩條對角線的交點(diǎn)為B,延長BD至點(diǎn)G,使DG=BD,延長BC至點(diǎn)E,使CE=BC,以BG,BE為鄰邊作正方形BEFG.(Ⅰ)如圖①,求OD的長及的值;(Ⅱ)如圖②,正方形AOCD固定,將正方形BEFG繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得正方形BE′F′G′,記旋轉(zhuǎn)角為α(0°<α<360°),連接AG′.①在旋轉(zhuǎn)過程中,當(dāng)∠BAG′=90°時(shí),求α的大?。虎谠谛D(zhuǎn)過程中,求AF′的長取最大值時(shí),點(diǎn)F′的坐標(biāo)及此時(shí)α的大?。ㄖ苯訉懗鼋Y(jié)果即可).20.(6分).在一個(gè)不透明的布袋中裝有三個(gè)小球,小球上分別標(biāo)有數(shù)字﹣1、0、2,它們除了數(shù)字不同外,其他都完全相同.隨機(jī)地從布袋中摸出一個(gè)小球,則摸出的球?yàn)闃?biāo)有數(shù)字2的小球的概率為;小麗先從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)M的橫坐標(biāo).再將此球放回、攪勻,然后由小華再從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)M的縱坐標(biāo),請用樹狀圖或表格列出點(diǎn)M所有可能的坐標(biāo),并求出點(diǎn)M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的概率.21.(6分)問題探究(1)如圖①,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關(guān)系為;(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個(gè)不固定的角,以AC為邊向△ADC的另一側(cè)作等邊△ABC,連接BD,則BD的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由;問題解決(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點(diǎn)D,則對角線AC的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由.22.(8分)如圖,矩形ABCD中,O是AC與BD的交點(diǎn),過O點(diǎn)的直線EF與AB、CD的延長線分別交于E、F.(1)證明:△BOE≌△DOF;(2)當(dāng)EF⊥AC時(shí),求證四邊形AECF是菱形.23.(8分)經(jīng)過江漢平原的滬蓉(上海﹣成都)高速鐵路即將動工.工程需要測量漢江某一段的寬度.如圖①,一測量員在江岸邊的A處測得對岸岸邊的一根標(biāo)桿B在它的正北方向,測量員從A點(diǎn)開始沿岸邊向正東方向前進(jìn)100米到達(dá)點(diǎn)C處,測得∠ACB=68°.(1)求所測之處江的寬度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的測量方案外,請你再設(shè)計(jì)一種測量江寬的方案,并在圖②中畫出圖形.(不用考慮計(jì)算問題,敘述清楚即可)24.(10分)某中學(xué)為了了解在校學(xué)生對校本課程的喜愛情況,隨機(jī)調(diào)查了部分學(xué)生對五類校本課程的喜愛情況,要求每位學(xué)生只能選擇一類最喜歡的校本課程,根據(jù)調(diào)查結(jié)果繪制了如下的兩個(gè)不完整統(tǒng)計(jì)圖.請根據(jù)圖中所提供的信息,完成下列問題:(1)本次被調(diào)查的學(xué)生的人數(shù)為;(2)補(bǔ)全條形統(tǒng)計(jì)圖(3)扇形統(tǒng)計(jì)圖中,類所在扇形的圓心角的度數(shù)為;(4)若該中學(xué)有2000名學(xué)生,請估計(jì)該校最喜愛兩類校本課程的學(xué)生約共有多少名.25.(10分)如果一條拋物線與軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.(1)“拋物線三角形”一定是三角形;(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點(diǎn)為對稱中心的矩形?若存在,求出過三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由.26.(12分)如圖,△ABC三個(gè)定點(diǎn)坐標(biāo)分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).請畫出△ABC關(guān)于y軸對稱的△A1B1C1;以原點(diǎn)O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請?jiān)诘谌笙迌?nèi)畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.27.(12分)某商場要經(jīng)營一種新上市的文具,進(jìn)價(jià)為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤最大;商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過30元;方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元請比較哪種方案的最大利潤更高,并說明理由
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】分析:根據(jù)已知畫出圖象,把x=?2代入得:4a?2b+c=0,把x=?1代入得:y=a?b+c>0,根據(jù)不等式的兩邊都乘以a(a<0)得:c>?2a,由4a?2b+c=0得而0<c<2,得到即可求出2a?b+1>0.詳解:根據(jù)二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)(?2,0)、(x1,0),且1<x1<2,與y軸的正半軸的交點(diǎn)在(0,2)的下方,畫出圖象為:如圖把x=?2代入得:4a?2b+c=0,∴①正確;把x=?1代入得:y=a?b+c>0,如圖A點(diǎn),∴②錯(cuò)誤;∵(?2,0)、(x1,0),且1<x1,∴取符合條件1<x1<2的任何一個(gè)x1,?2?x1<?2,∴由一元二次方程根與系數(shù)的關(guān)系知∴不等式的兩邊都乘以a(a<0)得:c>?2a,∴2a+c>0,∴③正確;④由4a?2b+c=0得而0<c<2,∴∴?1<2a?b<0∴2a?b+1>0,∴④正確.所以①③④三項(xiàng)正確.故選B.點(diǎn)睛:屬于二次函數(shù)綜合題,考查二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,拋物線與軸的交點(diǎn),屬于??碱}型.2、A【解析】【分析】根據(jù)三視圖的知識使用排除法即可求得答案.【詳解】如圖,由主視圖為三角形,排除了B、D,由俯視圖為長方形,可排除C,故選A.【點(diǎn)睛】本題考查了由三視圖判斷幾何體的知識,做此類題時(shí)可利用排除法解答.3、A【解析】【分析】根據(jù)主視圖是從幾何體正面看得到的圖形,認(rèn)真觀察實(shí)物,可得這個(gè)幾何體的主視圖為長方形上面一個(gè)三角形,據(jù)此即可得.【詳解】觀察實(shí)物,可知這個(gè)幾何體的主視圖為長方體上面一個(gè)三角形,只有A選項(xiàng)符合題意,故選A.【名師點(diǎn)睛】本題考查了幾何體的主視圖,明確幾何體的主視圖是從幾何體的正面看得到的圖形是解題的關(guān)鍵.4、C【解析】試題分析:利用根與系數(shù)的關(guān)系來求方程的另一根.設(shè)方程的另一根為α,則α+2=6,解得α=1.考點(diǎn):根與系數(shù)的關(guān)系.5、A【解析】分析:當(dāng)兩數(shù)的積為1時(shí),則這兩個(gè)數(shù)互為倒數(shù),根據(jù)定義即可得出答案.詳解:根據(jù)題意可得:5a=1,解得:a=,故選A.點(diǎn)睛:本題主要考查的是倒數(shù)的定義,屬于基礎(chǔ)題型.理解倒數(shù)的定義是解題的關(guān)鍵.6、A【解析】過點(diǎn)A作AM⊥x軸于點(diǎn)M,過點(diǎn)F作FN⊥x軸于點(diǎn)N,設(shè)OA=a,BF=b,通過解直角三角形分別找出點(diǎn)A、F的坐標(biāo),結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結(jié)論.解:過點(diǎn)A作AM⊥x軸于點(diǎn)M,過點(diǎn)F作FN⊥x軸于點(diǎn)N,如圖所示.設(shè)OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點(diǎn)A的坐標(biāo)為(35a,4∵點(diǎn)A在反比例函數(shù)y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點(diǎn)F的坐標(biāo)為(10+35b,4∵點(diǎn)F在反比例函數(shù)y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點(diǎn)睛”本題主要考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=12S菱形OBCA7、B【解析】
直接利用有理化因式的定義分析得出答案.【詳解】∵()(,)=12﹣2,=10,∴與互為有理化因式的是:,故選B.【點(diǎn)睛】本題考查了有理化因式,如果兩個(gè)含有二次根式的非零代數(shù)式相乘,它們的積不含有二次根式,就說這兩個(gè)非零代數(shù)式互為有理化因式.單項(xiàng)二次根式的有理化因式是它本身或者本身的相反數(shù);其他代數(shù)式的有理化因式可用平方差公式來進(jìn)行分步確定.8、C【解析】
由互為倒數(shù)的兩數(shù)之積為1,即可求解.【詳解】∵-3×-13=1,∴故選C9、D【解析】試題分析:由已知的三個(gè)圖可得到一般的規(guī)律,即第n個(gè)圖形中三角形的個(gè)數(shù)是4n,根據(jù)一般規(guī)律解題即可.解:根據(jù)給出的3個(gè)圖形可以知道:第1個(gè)圖形中三角形的個(gè)數(shù)是4,第2個(gè)圖形中三角形的個(gè)數(shù)是8,第3個(gè)圖形中三角形的個(gè)數(shù)是12,從而得出一般的規(guī)律,第n個(gè)圖形中三角形的個(gè)數(shù)是4n.故選D.考點(diǎn):規(guī)律型:圖形的變化類.10、D【解析】【分析】由圖可知,OA=10,OD=1.根據(jù)特殊角的三角函數(shù)值求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠E的度數(shù)即可.【詳解】由圖可知,OA=10,OD=1,在Rt△OAD中,∵OA=10,OD=1,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所對的圓周角的度數(shù)是60°或120°,故選D.【點(diǎn)睛】本題考查了圓周角定理、圓內(nèi)接四邊形的對角互補(bǔ)、解直角三角形的應(yīng)用等,正確畫出圖形,熟練應(yīng)用相關(guān)知識是解題的關(guān)鍵.11、B【解析】
解:11人成績的中位數(shù)是第6名的成績.參賽選手要想知道自己是否能進(jìn)入前6名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.故選B.【點(diǎn)睛】本題考查統(tǒng)計(jì)量的選擇,掌握中位數(shù)的意義是本題的解題關(guān)鍵.12、A【解析】
根據(jù)乘方的法則進(jìn)行計(jì)算,然后根據(jù)只有符號不同的兩個(gè)數(shù)互為相反數(shù),可得答案.【詳解】解:A.=9,=-9,故和互為相反數(shù),故正確;B.=9,=9,故和不是互為相反數(shù),故錯(cuò)誤;C.=-8,=-8,故和不是互為相反數(shù),故錯(cuò)誤;D.=8,=8故和不是互為相反數(shù),故錯(cuò)誤.故選A.【點(diǎn)睛】本題考查了有理數(shù)的乘方和相反數(shù)的定義,關(guān)鍵是掌握有理數(shù)乘方的運(yùn)算法則.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、3【解析】試題分析:先進(jìn)行二次根式的化簡,然后合并,可得原式=23+3=33.14、x≤1【解析】分析:根據(jù)二次根式有意義的條件解答即可.詳解:∵二次根式有意義,被開方數(shù)為非負(fù)數(shù),∴1-x≥0,解得x≤1.故答案為x≤1.點(diǎn)睛:本題考查了二次根式有意義的條件,熟知二次根式有意義,被開方數(shù)為非負(fù)數(shù)是解題的關(guān)鍵.15、1【解析】
根據(jù)向量的三角形法則表示出CB,再根據(jù)BC、AD的關(guān)系解答.【詳解】如圖,∵AB=a,∴CB=AB-AC=a-b,∵AD∥BC,BC=2AD,∴DA=12CB=12(a-b)=1故答案為12a-【點(diǎn)睛】本題考查了平面向量,梯形,向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關(guān)鍵.16、1【解析】
根據(jù)函數(shù)值相等兩點(diǎn)關(guān)于對稱軸對稱,可得答案.【詳解】由點(diǎn)A(﹣1,4)、B(m,4)在拋物線y=a(x﹣1)2+h上,得:(﹣1,4)與(m,4)關(guān)于對稱軸x=1對稱,m﹣1=1﹣(﹣1),解得:m=1.故答案為:1.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,利用函數(shù)值相等兩點(diǎn)關(guān)于對稱軸對稱得出m﹣1=1﹣(﹣1)是解題的關(guān)鍵.17、或7【解析】
分兩種情況:①如圖1,作輔助線,構(gòu)建矩形,先由勾股定理求斜邊AB=10,由中點(diǎn)的定義求出AD和BD的長,證明四邊形HFGB是矩形,根據(jù)同角的三角函數(shù)列式可以求DG和DF的長,并由翻折的性質(zhì)得:∠DA'E=∠A,A'D=AD=5,由矩形性質(zhì)和勾股定理可以得出結(jié)論:A'B=;②如圖2,作輔助線,構(gòu)建矩形A'MNF,同理可以求出A'B的長.【詳解】解:分兩種情況:如圖1,過D作DG⊥BC與G,交A'E與F,過B作BH⊥A'E與H,D為AB的中點(diǎn),BD=AB=AD,∠C=,AC=8,BC=6,AB=10,BD=AD=5,sin∠ABC=,DG=4,由翻折得:∠DA'E=∠A,A'D=AD=5,sin∠DA'E=sin∠A=.DF=3,FG=4-3=1,A'E⊥AC,BC⊥AC,A'E//BC,∠HFG+∠DGB=,∠DGB=,∠HFG=,∠EHB=,四邊形HFGB是矩形,BH=FG=1,同理得:A'E=AE=8-1=7,A'H=A'E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A'B=.如圖2,過D作MN//AC,交BC與于N,過A'作A'F//AC,交BC的延長線于F,延長A'E交直線DN于M,A'E⊥AC,A'M⊥MN,A'E⊥A'F,∠M=∠MA'F=,∠ACB=,∠F=∠ACB=,四邊形MA'FN県矩形,MN=A'F,FN=A'M,由翻折得:A'D=AD=5,Rt△A'MD中,DM=3,A'M=4,FN=A'M=4,Rt△BDN中,BD=5,DN=4,BN=3,A'F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A'B=;綜上所述,A'B的長為或.故答案為:或.【點(diǎn)睛】本題主要考查三角形翻轉(zhuǎn)后的性質(zhì),注意不同的情況需分情況討論.18、(x+1);.【解析】試題分析:設(shè)水深為x尺,則蘆葦長用含x的代數(shù)式可表示為(x+1)尺,根據(jù)題意列方程為.故答案為(x+1),.考點(diǎn):由實(shí)際問題抽象出一元二次方程;勾股定理的應(yīng)用.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(Ⅰ)(Ⅱ)①α=30°或150°時(shí),∠BAG′=90°②當(dāng)α=315°時(shí),A、B、F′在一條直線上時(shí),AF′的長最大,最大值為+2,此時(shí)α=315°,F(xiàn)′(+,﹣)【解析】
(1)根據(jù)正方形的性質(zhì)以及勾股定理即可解決問題,(2)①因?yàn)椤螧AG′=90°,BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋轉(zhuǎn)角α=30°,據(jù)對稱性可知,當(dāng)∠ABG″=60°時(shí),∠BAG″=90°,也滿足條件,此時(shí)旋轉(zhuǎn)角α=150°,②當(dāng)α=315°時(shí),A、B、F′在一條直線上時(shí),AF′的長最大.【詳解】(Ⅰ)如圖1中,∵A(0,1),∴OA=1,∵四邊形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如圖2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋轉(zhuǎn)角α=30°,根據(jù)對稱性可知,當(dāng)∠ABG″=60°時(shí),∠BAG″=90°,也滿足條件,此時(shí)旋轉(zhuǎn)角α=150°,綜上所述,旋轉(zhuǎn)角α=30°或150°時(shí),∠BAG′=90°.②如圖3中,連接OF,∵四邊形BE′F′G′是正方形的邊長為∴BF′=2,∴當(dāng)α=315°時(shí),A、B、F′在一條直線上時(shí),AF′的長最大,最大值為+2,此時(shí)α=315°,F(xiàn)′(+,﹣)【點(diǎn)睛】本題考查的是正方形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)以及銳角三角函數(shù)的定義,解決本題的關(guān)鍵是要熟練掌握正方形的四條邊相等、四個(gè)角相等,旋轉(zhuǎn)變換的性質(zhì)以及特殊角的三角函數(shù)值的應(yīng)用.20、(1);(2)列表見解析,.【解析】試題分析:(1)一共有3種等可能的結(jié)果總數(shù),摸出標(biāo)有數(shù)字2的小球有1種可能,因此摸出的球?yàn)闃?biāo)有數(shù)字2的小球的概率為;(2)利用列表得出共有9種等可能的結(jié)果數(shù),再找出點(diǎn)M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的結(jié)果數(shù),可求得結(jié)果.試題解析:(1)P(摸出的球?yàn)闃?biāo)有數(shù)字2的小球)=;(2)列表如下:小華
小麗
-1
0
2
-1
(-1,-1)
(-1,0)
(-1,2)
0
(0,-1)
(0,0)
(0,2)
2
(2,-1)
(2,0)
(2,2)
共有9種等可能的結(jié)果數(shù),其中點(diǎn)M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的結(jié)果數(shù)為6,∴P(點(diǎn)M落在如圖所示的正方形網(wǎng)格內(nèi))==.考點(diǎn):1列表或樹狀圖求概率;2平面直角坐標(biāo)系.21、(1)BE+DF=EF;(2)存在,BD的最大值為6;(3)存在,AC的最大值為2+2.【解析】
(1)作輔助線,首先證明△ABE≌△ADG,再證明△AEF≌△AEG,進(jìn)而得到EF=FG問題即可解決;(2)將△ABD繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BCE,連接DE,由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根據(jù)DE<DC+CE,則當(dāng)D、C、E三點(diǎn)共線時(shí),DE存在最大值,問題即可解決;(3)以BC為邊作等邊三角形BCE,過點(diǎn)E作EF⊥BC于點(diǎn)F,連接DE,由旋轉(zhuǎn)的性質(zhì)得△DBE是等邊三角形,則DE=AC,根據(jù)在等邊三角形BCE中,EF⊥BC,可求出BF,EF,以BC為直徑作⊙F,則點(diǎn)D在⊙F上,連接DF,可求出DF,則AC=DE≤DF+EF,代入數(shù)值即可解決問題.【詳解】(1)如圖①,延長CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案為:BE+DF=EF;(2)存在.在等邊三角形ABC中,AB=BC,∠ABC=60°,如圖②,將△ABD繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BCE,連接DE.由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等邊三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴當(dāng)D、C、E三點(diǎn)共線時(shí),DE存在最大值,且最大值為6,∴BD的最大值為6;(3)存在.如圖③,以BC為邊作等邊三角形BCE,過點(diǎn)E作EF⊥BC于點(diǎn)F,連接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等邊三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC為直徑作⊙F,則點(diǎn)D在⊙F上,連接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值為2+2.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì).22、(1)(2)證明見解析【解析】
(1)根據(jù)矩形的性質(zhì),通過“角角邊”證明三角形全等即可;(2)根據(jù)題意和(1)可得AC與EF互相垂直平分,所以四邊形AECF是菱形.【詳解】(1)證明:∵四邊形ABCD是矩形,∴OB=OD,AE∥CF,∴∠E=∠F(兩直線平行,內(nèi)錯(cuò)角相等),在△BOE與△DOF中,,∴△BOE≌△DOF(AAS).(2)證明:∵四邊形ABCD是矩形,∴OA=OC,又∵由(1)△BOE≌△DOF得,OE=OF,∴四邊形AECF是平行四邊形,又∵EF⊥AC,∴四邊形AECF是菱形.23、(1)21米(2)見解析【解析】試題分析:(1)根據(jù)題意易發(fā)現(xiàn),直角三角形ABC中,已知AC的長度,又知道了∠ACB的度數(shù),那么AB的長就不難求出了.(2)從所畫出的圖形中可以看出是利用三角形全等、三角形相似、解直角三角形的知識來解決問題的.解:(1)在Rt△BAC中,∠ACB=68°,∴AB=AC?tan68°≈100×2.1=21(米)答:所測之處江的寬度約為21米.(2)①延長BA至C,測得AC做記錄;②從C沿平行于河岸的方向走到D,測得CD,做記錄;③測AE,做記錄.根據(jù)△BAE∽△BCD,得到比例線段,從而解答24、(1)300;(2)見解析;(3)108°;(4)約有840名.【解析】
(1)根據(jù)A種類人數(shù)及其占總?cè)藬?shù)百分比可得答案;
(2)用總?cè)藬?shù)乘以B的百分比得出其人數(shù),即可補(bǔ)全條形圖;
(3)用360°乘以C類人數(shù)占總?cè)藬?shù)的比例可得;
(4)總?cè)藬?shù)乘以C、D兩類人數(shù)占樣本的比例可得答案.【詳解】解:(1)本次被調(diào)查的學(xué)生的人數(shù)為69÷23%=300(人),
故答案為:300;
(2)喜歡B類校本課程的人數(shù)為300×20%=60(人),
補(bǔ)全條形圖如下:
(3)扇形統(tǒng)計(jì)圖中,C類所在扇形的圓心角的度數(shù)為360°×=108°,
故答案為:108°;
(4)∵2000×=840,
∴估計(jì)該校喜愛C,D兩類校本課程的學(xué)生共有840名.【點(diǎn)睛】本題考查條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從統(tǒng)計(jì)圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年健身器材租賃及體育場地管理服務(wù)合同3篇
- 2024年房地產(chǎn)包銷合作協(xié)議范本與合同履行監(jiān)督3篇
- 2024年度中鐵電子商務(wù)采購信息平臺數(shù)據(jù)備份與恢復(fù)合同2篇
- 2024年度商業(yè)活動單位廣告制作服務(wù)合同范本3篇
- 2024年度網(wǎng)絡(luò)主播與廣告公司合作推廣協(xié)議6篇
- 2024年新能源汽車充電設(shè)施合作銷售合同范本3篇
- 2024年度羊群代放牧技術(shù)指導(dǎo)與質(zhì)量保障合同書3篇
- 2024年大型養(yǎng)殖場承包養(yǎng)殖保險(xiǎn)合作協(xié)議書3篇
- 2024年新能源電池材料購銷合同3篇
- 2024在線學(xué)生安全協(xié)議電子簽署及風(fēng)險(xiǎn)評估合同3篇
- 鼻炎疾病知識培訓(xùn)課件
- 中華民族一家親同心共筑中國夢
- 膿毒血癥病例查房
- 消防設(shè)施操作員培訓(xùn)方案
- 養(yǎng)老培訓(xùn)市場分析報(bào)告
- 2024年上海市六年高考英語作文試題真題匯編(含范文)
- 計(jì)算機(jī)程序設(shè)計(jì)員國家職業(yè)資格三級高級操作技能考核輔導(dǎo)課件
- 江西省九江市都昌縣2023-2024學(xué)年八年級上學(xué)期1月期末歷史試題(含答案)
- 《延遲焦化介紹》課件
- 起重機(jī)械安全技術(shù)規(guī)程(TSG-51-2023)宣貫解讀課件
- 2023年醫(yī)院麻醉科手術(shù)數(shù)量報(bào)告
評論
0/150
提交評論