版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年江西省上饒廣豐區(qū)六校聯(lián)考中考數(shù)學對點突破模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,在正方形ABCD中,E為AB的中點,G,F(xiàn)分別為AD、BC邊上的點,若AG=1,BF=2,∠GEF=90°,則GF的長為()A.2 B.3 C.4 D.52.如圖,△ABC紙片中,∠A=56,∠C=88°.沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD.則∠BDE的度數(shù)為()A.76° B.74° C.72° D.70°3.已知代數(shù)式x+2y的值是5,則代數(shù)式2x+4y+1的值是()A.6
B.7C.11D.124.已知一次函數(shù)y=ax﹣x﹣a+1(a為常數(shù)),則其函數(shù)圖象一定過象限()A.一、二 B.二、三 C.三、四 D.一、四5.若分式有意義,則x的取值范圍是()A.x>3 B.x<3 C.x≠3 D.x=36.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A. B. C. D.7.一個由圓柱和圓錐組成的幾何體如圖水平放置,其主(正)視圖為()A. B. C. D.8.如圖是由三個相同小正方體組成的幾何體的主視圖,那么這個幾何體可以是()A.B.C.D.9.如圖,∠ACB=90°,D為AB的中點,連接DC并延長到E,使CE=CD,過點B作BF∥DE,與AE的延長線交于點F,若AB=6,則BF的長為()A.6 B.7 C.8 D.1010.如圖,直線l1、l2、l3表示三條相互交叉的公路,現(xiàn)要建一個貨物中轉站,要求它到三條公路的距離相等,則供選擇的地址有()A.1處 B.2處 C.3處 D.4處二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,定長弦CD在以AB為直徑的⊙O上滑動(點C、D與點A、B不重合),M是CD的中點,過點C作CP⊥AB于點P,若CD=3,AB=8,PM=l,則l的最大值是12.如圖,路燈距離地面6,身高1.5的小明站在距離燈的底部(點)15的處,則小明的影子的長為________.13.如圖,在矩形ABCD中,過點A的圓O交邊AB于點E,交邊AD于點F,已知AD=5,AE=2,AF=1.如果以點D為圓心,r為半徑的圓D與圓O有兩個公共點,那么r的取值范圍是______.14.分解因式:4x2﹣36=___________.15.《九章算術》是中國傳統(tǒng)數(shù)學最重要的著作,在“勾股”章中有這樣一個問題:“今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步而見木?”用今天的話說,大意是:如圖,是一座邊長為200步(“步”是古代的長度單位)的正方形小城,東門位于的中點,南門位于的中點,出東門15步的處有一樹木,求出南門多少步恰好看到位于處的樹木(即點在直線上)?請你計算的長為__________步.16.的相反數(shù)是_____,倒數(shù)是_____,絕對值是_____三、解答題(共8題,共72分)17.(8分)某跳水隊為了解運動員的年齡情況,作了一次年齡調查,根據(jù)跳水運動員的年齡(單位:歲),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關信息,解答下列問題:本次接受調查的跳水運動員人數(shù)為,圖①中m的值為;求統(tǒng)計的這組跳水運動員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).18.(8分)如圖,△ABD是⊙O的內接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.(1)求證:BC是⊙O的切線;(2)若⊙O的半徑為6,BC=8,求弦BD的長.19.(8分)如圖,在方格紙中.(1)請在方格紙上建立平面直角坐標系,使,,并求出點坐標;(2)以原點為位似中心,相似比為2,在第一象限內將放大,畫出放大后的圖形;(3)計算的面積.20.(8分)如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點D,過點D的直線交BC于點E,交AB的延長線于點P,∠A=∠PDB.(1)求證:PD是⊙O的切線;(2)若AB=4,DA=DP,試求弧BD的長;(3)如圖②,點M是弧AB的中點,連結DM,交AB于點N.若tanA=12,求DN21.(8分)先化簡,然后從中選出一個合適的整數(shù)作為的值代入求值.22.(10分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.(1)求證:BC是⊙O的切線;(2)已知AD=3,CD=2,求BC的長.23.(12分)如圖,矩形中,對角線,相交于點,且,.動點,分別從點,同時出發(fā),運動速度均為lcm/s.點沿運動,到點停止.點沿運動,點到點停留4后繼續(xù)運動,到點停止.連接,,,設的面積為(這里規(guī)定:線段是面積為0的三角形),點的運動時間為.(1)求線段的長(用含的代數(shù)式表示);(2)求時,求與之間的函數(shù)解析式,并寫出的取值范圍;(3)當時,直接寫出的取值范圍.24.如圖,在四邊形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】∵四邊形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG?BF=2,∴AE=(舍負),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的長為3,故選B.【點睛】本題考查了相似三角形的性質的應用,利用勾股定理即可得解,解題的關鍵是證明△AEG∽△BFE.2、B【解析】
直接利用三角形內角和定理得出∠ABC的度數(shù),再利用翻折變換的性質得出∠BDE的度數(shù).【詳解】解:∵∠A=56°,∠C=88°,
∴∠ABC=180°-56°-88°=36°,
∵沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,
∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,
∴∠BDE=180°-18°-88°=74°.
故選:B.【點睛】此題主要考查了三角形內角和定理,正確掌握三角形內角和定理是解題關鍵.3、C【解析】
根據(jù)題意得出x+2y=5,將所求式子前兩項提取2變形后,把x+2y=5代入計算即可求出值.【詳解】∵x+2y=5,∴2x+4y=10,則2x+4y+1=10+1=1.故選C.【點睛】此題考查了代數(shù)式求值,利用了整體代入的思想,是一道基本題型.4、D【解析】分析:根據(jù)一次函數(shù)的圖形與性質,由一次函數(shù)y=kx+b的系數(shù)k和b的符號,判斷所過的象限即可.詳解:∵y=ax﹣x﹣a+1(a為常數(shù)),∴y=(a-1)x-(a-1)當a-1>0時,即a>1,此時函數(shù)的圖像過一三四象限;當a-1<0時,即a<1,此時函數(shù)的圖像過一二四象限.故其函數(shù)的圖像一定過一四象限.故選D.點睛:此題主要考查了一次函數(shù)的圖像與性質,利用一次函數(shù)的圖像與性質的關系判斷即可.一次函數(shù)y=kx+b(k≠0,k、b為常數(shù))的圖像與性質:當k>0,b>0時,圖像過一二三象限,y隨x增大而增大;當k>0,b<0時,圖像過一三四象限,y隨x增大而增大;當k<0,b>0時,圖像過一二四象限,y隨x增大而減??;當k<0,b<0,圖像過二三四象限,y隨x增大而減小.5、C【解析】
試題分析:∵分式有意義,∴x﹣3≠0,∴x≠3;故選C.考點:分式有意義的條件.6、A【解析】
∵Rt△ABC中,∠C=90°,sinA=,∴cosA=,∴∠A+∠B=90°,∴sinB=cosA=.故選A.7、A【解析】【分析】根據(jù)主視圖是從幾何體正面看得到的圖形,認真觀察實物,可得這個幾何體的主視圖為長方形上面一個三角形,據(jù)此即可得.【詳解】觀察實物,可知這個幾何體的主視圖為長方體上面一個三角形,只有A選項符合題意,故選A.【名師點睛】本題考查了幾何體的主視圖,明確幾何體的主視圖是從幾何體的正面看得到的圖形是解題的關鍵.8、A【解析】試題分析:主視圖是從正面看到的圖形,只有選項A符合要求,故選A.考點:簡單幾何體的三視圖.9、C【解析】∵∠ACB=90°,D為AB的中點,AB=6,∴CD=AB=1.又CE=CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,點D是AB的中點,∴ED是△AFB的中位線,∴BF=2ED=3.故選C.10、D【解析】
到三條相互交叉的公路距離相等的地點應是三條角平分線的交點.把三條公路的中心部位看作三角形,那么這個三角形兩個內角平分線的交點以及三個外角兩兩平分線的交點都滿足要求.【詳解】滿足條件的有:(1)三角形兩個內角平分線的交點,共一處;(2)三個外角兩兩平分線的交點,共三處.如圖所示,故選D.【點睛】本題考查了角平分線的性質;這是一道生活聯(lián)系實際的問題,解答此類題目時最直接的判斷就是三角形的角平分線,很容易漏掉外角平分線,解答時一定要注意,不要漏解.二、填空題(本大題共6個小題,每小題3分,共18分)11、4【解析】
當CD∥AB時,PM長最大,連接OM,OC,得出矩形CPOM,推出PM=OC,求出OC長即可.【詳解】當CD∥AB時,PM長最大,連接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M為CD中點,OM過O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四邊形CPOM是矩形,∴PM=OC,∵⊙O直徑AB=8,∴半徑OC=4,即PM=4.【點睛】本題考查矩形的判定和性質,垂徑定理,平行線的性質,此類問題是初中數(shù)學的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.12、1.【解析】
易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影長.【詳解】解:根據(jù)題意,易得△MBA∽△MCO,
根據(jù)相似三角形的性質可知,即,
解得AM=1m.則小明的影長為1米.
故答案是:1.【點睛】本題只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比可得出小明的影長.13、【解析】
因為以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交,圓心距滿足關系式:|R-r|<d<R+r,求得圓D與圓O的半徑代入計算即可.【詳解】連接OA、OD,過O點作ON⊥AE,OM⊥AF.AN=AE=1,AM=AF=2,MD=AD-AM=3∵四邊形ABCD是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四邊形OMAN是矩形∴OM=AN=1∴OA=,OD=∵以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交∴【點睛】本題考查了圓與圓相交的條件,熟記圓與圓相交時圓的半徑與圓心距的關系是關鍵.14、4(x+3)(x﹣3)【解析】分析:首先提取公因式4,然后再利用平方差公式進行因式分解.詳解:原式=.點睛:本題主要考查的是因式分解,屬于基礎題型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.15、【解析】分析:由正方形的性質得到∠EDG=90°,從而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性質得到CK:KD=HD:HA,求解即可得到結論.詳解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案為:.點睛:本題考查了相似三角形的應用.解題的關鍵是證明△CKD∽△DHA.16、,【解析】∵只有符號不同的兩個數(shù)是互為相反數(shù),∴的相反數(shù)是;∵乘積為1的兩個數(shù)互為倒數(shù),∴的倒數(shù)是;∵負數(shù)得絕對值是它的相反數(shù),∴絕對值是故答案為(1).(2).(3).三、解答題(共8題,共72分)17、(1)40人;1;(2)平均數(shù)是15;眾數(shù)16;中位數(shù)15.【解析】
(1)用13歲年齡的人數(shù)除以13歲年齡的人數(shù)所占的百分比,即可得本次接受調查的跳水運動員人數(shù);用16歲年齡的人數(shù)除以本次接受調查的跳水運動員人數(shù)即可求得m的值;(2)根據(jù)統(tǒng)計圖中給出的信息,結合求平均數(shù)、眾數(shù)、中位數(shù)的方法求解即可.【詳解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案為40,1.(2)觀察條形統(tǒng)計圖,∵,∴這組數(shù)據(jù)的平均數(shù)為15;∵在這組數(shù)據(jù)中,16出現(xiàn)了12次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為16;∵將這組數(shù)據(jù)按照從小到大的順序排列,其中處于中間的兩個數(shù)都是15,有,∴這組數(shù)據(jù)的中位數(shù)為15.【點睛】本題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,掌握平均數(shù)、眾數(shù)和中位數(shù)的定義是解題的關鍵.18、(1)詳見解析;(2)BD=9.6.【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切線.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.點睛:本題主要考查圓中的計算問題,解題的關鍵在于清楚角度的轉換方式和弦長的計算方法.19、(1)作圖見解析;.(2)作圖見解析;(3)1.【解析】分析:(1)直接利用A,C點坐標得出原點位置進而得出答案;(2)利用位似圖形的性質即可得出△A'B'C';(3)直接利用(2)中圖形求出三角形面積即可.詳解:(1)如圖所示,即為所求的直角坐標系;B(2,1);(2)如圖:△A'B'C'即為所求;(3)S△A'B'C'=×4×8=1.點睛:此題主要考查了位似變換以及三角形面積求法,正確得出對應點位置是解題的關鍵.畫位似圖形的一般步驟為:①確定位似中心;②分別連接并延長位似中心和關鍵點;③根據(jù)位似比,確定位似圖形的關鍵點;④順次連接上述各點,得到放大或縮小的圖形.20、(1)見解析;(2)23π;(3)【解析】
(1)連結OD;由AB是⊙O的直徑,得到∠ADB=90°,根據(jù)等腰三角形的性質得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圓上,于是得到結論;(2)設∠A=x,則∠A=∠P=x,∠DBA=2x,在△ABD中,根據(jù)∠A+∠ABD=90o列方程求出x的值,進而可得到∠DOB=60o,然后根據(jù)弧長公式計算即可;(3)連結OM,過D作DF⊥AB于點F,然后證明△OMN∽△FDN,根據(jù)相似三角形的性質求解即可.【詳解】(1)連結OD,∵AB是⊙O的直徑,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圓上,∴PD是⊙O的切線.(2)設∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD長l=60·π·2(3)連結OM,過D作DF⊥AB于點F,∵點M是的中點,∴OM⊥AB,設BD=x,則AD=2x,AB=5x=2OM,即OM=5在Rt△BDF中,DF=25由△OMN∽△FDN得DNMN【點睛】本題是圓的綜合題,考查了切線的判定,圓周角定理及其推論,三角形外角的性質,含30°角的直角三角形的性質,弧長的計算,弧弦圓心角的關系,相似三角形的判定與性質.熟練掌握切線的判定方法是解(1)的關鍵,求出∠A=30o是解(2)的關鍵,證明△OMN∽△FDN是解(3)的關鍵.21、-1【解析】
先化簡,再選出一個合適的整數(shù)代入即可,要注意a的取值范圍.【詳解】解:,當時,原式.【點睛】本題考查的是代數(shù)式的求值,熟練掌握代數(shù)式的化簡是解題的關鍵.22、(1)證明見解析(2)BC=【解析】
(1)AB是⊙O的直徑,得∠ADB=90°,從而得出∠BAD=∠DBC,即∠ABC=90°,即可證明BC是⊙O的切線;(2)可證明△ABC∽△BDC,則,即可得出BC=.【詳解】(1)∵AB是⊙O的切直徑,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切線;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴,即BC2=AC?CD=(AD+CD)?CD=10,∴BC=.考點:1.切線的判定;2.相似三角形的判定和性質.23、(1)當0<x≤1時,PD=1-x,當1<x≤14時,PD=x-1.(2)y=;(3)5≤x≤9【解析】
(1)分點P在線段CD或在線段AD上兩種情形分別求解即可.
(2)分三種情形:①當5≤x≤1時,如圖1中,根據(jù)y=S△DPB,求解即可.②當1<x≤9時,如圖2中,根據(jù)y=S△DPB,求解即可.③9<x≤14時,如圖3中,根據(jù)y=S△APQ+S△ABQ-S△PAB計算即可.
(3)根據(jù)(2)中結論
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋維修合同范本(6篇)
- 某學校外墻裝飾改造施工組織設計
- 石河子大學《網絡安全技術及應用》2023-2024學年期末試卷
- 石河子大學《軟件體系結構》2021-2022學年期末試卷
- 石河子大學《電工學實驗》2021-2022學年期末試卷
- 沈陽理工大學《現(xiàn)代控制理論》2023-2024學年期末試卷
- 沈陽理工大學《汽車制造工藝學》2022-2023學年第一學期期末試卷
- 沈陽理工大學《計算機網絡》2022-2023學年期末試卷
- 肝癌靶向聯(lián)合免疫治療
- 沈陽理工大學《功能高分子》2023-2024學年第一學期期末試卷
- 2024年5S培訓:全面優(yōu)化工作場所
- GB/T 9445-2024無損檢測人員資格鑒定與認證
- 2024-2030年醫(yī)療美容產品行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 九年級中考英語數(shù)詞課件
- 幼兒園集中用餐食品安全崗位責任制度
- 食品生產企業(yè)食品安全管理人員考試題庫含答案完整版
- 職業(yè)院校“金課”建設方案
- 新質生產力-講解課件
- 組織行為與領導力智慧樹知到期末考試答案2024年
- 30道計量員崗位常見面試問題含HR問題考察點及參考回答
- 醫(yī)?;鸨O(jiān)管知識考試題庫300題(含答案)
評論
0/150
提交評論