




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
十年(2014—2023)年高考真題分項(xiàng)匯編一集合
目錄
題型一:集合的基本概念..............................................1
題型二:集合間的基本關(guān)系............................................3
題型三:集合的基本運(yùn)算..............................................3
題型四:集合的綜合問(wèn)題..............................................7
題型一:集合的基本概念
1.(2023年全國(guó)甲卷理科?第1題)設(shè)全集U=Z,集合
M={x\x-3k+1,keZ},N={x\x-3k+2,keZ},”(M2N)=()
A.{x\x=3k,kB.{x|x=3k-l,keZ}
C.{x|x=3k-2,keZ}D.0
【答案】A
解析:因?yàn)檎麛?shù)集Z={x|x=3左,左eZ}U{x|x=3左+1,左eZ}U{x|x=3左+2,左eZ},U=Z,
所以,Q.(MUN)={x|x=3左,左eZ}.
故選:A.
2.(2022年全國(guó)乙卷理科?第1題)設(shè)全集。={1,2,3,4,5},集合M滿足Q.M={1,3},則()
A.2GMB.3&MC.4史A/D.5^M
【答案】A
解析:由題知"={2,4,5},對(duì)比選項(xiàng)知,力正確,3。錯(cuò)誤
3.(2021年高考全國(guó)乙卷理科?第2題)已知集合5={s|s=2〃+1,〃eZ},T={//=4〃+1,〃eZ},則
S?T()
A.0B.SC.TD.Z
【答案】C
解析:任取feT,則t=4〃+l=2?(2〃)+l,其中“cZ,所以,teS,故T=
因此,SC\T=T.
故選:C.
4.(2020年高考數(shù)學(xué)課標(biāo)III卷理科?第1題)已知集合/={(x,y)|x,"N*,”x},5={(x))|x+y=8},
則/nB中元素的個(gè)數(shù)為()
A.2B.3C.4D.6
【答案】C
?[y>x*
解析:由題意,ZCIB中的元素滿足《。,且,
[x+V=8
由x+y=822x,得x44,
所以滿足x+y=8的有(1,7),(2,6),(3,5),(4,4),
故/n8中元素的個(gè)數(shù)為4.
故選:C.
5.(2018年高考數(shù)學(xué)課標(biāo)H卷(理)?第2題)己知集合/={(x,切,+/《3,xeZ,yel],則/中元素
的個(gè)數(shù)為()
A.9B.8C.5D.4
【答案】4
解析:A={(x,y)\x2+/W3,xGZ,yez}={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(-1,1)},故
選A.
6.(2017年高考數(shù)學(xué)課標(biāo)H卷理科?第2題)設(shè)集合A={1,2,4},B=k,-4x+m=o}.若AP|B={1},
則8=()
A.{1,-3}B.{1,0}C.{1,3}D.{155}
【答案】C
【命題意圖】本題主要考查一元二次方程的解法及集合的基本運(yùn)算,以考查考生的運(yùn)算能力為目
的.
【解析】解法一:常規(guī)解法
/C|8={1}1是方程--4x+”?=0的一個(gè)根,即機(jī)=3,;.8={小2-4x+3=o}
故3={1,3}
解法二:韋達(dá)定理法
,/^ns={l};.1是方程d-4x+"?=0的一個(gè)根,...利用偉大定理可知:X,+1=4,解得:
玉=3,故8={1,3}
解法三:排除法
二?集合8中的元素必是方程方程x?-4x+機(jī)=0的根,,x,+x2=4,從四個(gè)選項(xiàng)4、B、C.D
看只有C選項(xiàng)滿足題意.
題型二:集合間的基本關(guān)系
l.(2023年新課標(biāo)全國(guó)^卷第2題)設(shè)集合4={0,—a},8={l,a-2,2a-2},若Zu8,則a=().
2
A.2B.1C.—D.-1
3
【答案】B
解析:因?yàn)椤ㄈ?,則有:
若"2=0,解得a=2,此時(shí)力={0,-2},5={1,0,2),不符合題意:
若2a—2=0,解得a=l,此時(shí)4={0,-1},5={1,-1,0},符合題意;
綜上所述:a=l.
故選:B.
題型三:集合的基本運(yùn)算
1.(2023年新課標(biāo)全國(guó)I卷?第1題)己知集合〃={-2,-1,0,1,2},N={X,_X_6NO},則McN=
()
A.{—2,—1,0,1}B.{0,1,2}C.{—2}D.2
【答案】C
解析:方法一:因?yàn)槠?1,2一二一6N0}=(—力,—2]u[3,+e),而-={-2,-1,0,1,2},
所以McN={-2}.
故選:C.
方法二:因?yàn)椤?{—2,—1,0,1,2},將一2,-1,0,1,2代入不等式—x_6?0,只有一2使不等式成立,
所以McN={—2}.
故選:C.
2.(2023年全國(guó)乙卷理科?第2題)設(shè)集合U=R,集合M={x|x<1},N=卜|一1<x<2},則{x|x22}=
()
A.Q,(〃UN)B.NUq,〃
C.Q,("PIN)D.MuQN
【答案】A
解析:由題意可得MUN={x|x<2},貝g,(A/UN)={x|x22},選項(xiàng)4正確;
^,M={x\x>l},則NUq?={x|x>—1},選項(xiàng)B錯(cuò)誤;
〃nN={x|-l<x<l},則電WcN)={x|xW-l或x?l},選項(xiàng)C錯(cuò)誤;
aN={x|xW—l或x22},則MUQ,N={x|x<l或xN2},選項(xiàng)D錯(cuò)誤;
故選:A.
3.(2022年全國(guó)甲卷理科?第3題)設(shè)全集U={-2,-1,0,1,2,3},集合人{(lán)-1,2},8=卜|f_4x+3=。},則
0(A2B)=()
A.{1,3}B.{0,3}C.{-2,1}D.{-2,0}
【答案】D
解析:由題意,5={X|X2-4X+3=0}={1,3},所以48={-1,1,2,3},所以。(入8)={-2,0}.故選:
D.
4.(2022新高考全國(guó)〃卷?第1題)已知集合2={-1,1,2,4},8=卜卜一1歸1},則4n8=
()
A.{-1,2}B.{1,2}C.{1,4}D.{-1,4}
【答案】B
解析:3={x[0Kx<2},故Zn8={l,2}.故選B.
5.(2022新高考全國(guó)/卷?第1題)若集合河=*|4<4},N={x|3x?l},則A/nN=()
A.{x|0<x<2}B.<x<x<2>C.{x|34x<16}D.
【答案】0
解析:M={x|04x<16},N={x|xN;},故MPlN=<x;4x<16>,故選:D
6.(2021年新高考全國(guó)II卷?第2題)設(shè)集合U={123,4,5,6},/={1,3,6},5={2,3,4),則4(1(。8)=
()
A.{3}B.{1,6}C.{5,6}D.{1,3}
【答案】B
解析:由題設(shè)可得。8={1,5,6},故4c(布8)={1,6},故選B.
7.(2021年新高考I卷?第1題)設(shè)集合4=卜卜2Vx<4},8={2,3,4,5},則4口8=
)
A.{2}B.{2,3}C.{3,4}D.{2,3,4}
【答案】B
解析:由題設(shè)有4c8={2,3},故選B.
8.(2020年新高考/卷(山東卷)?第1題)設(shè)集合4={x|lSx43},8={x|2<x<4},則4UB=
()
A.{x|2<x<3}B.{x|2<x<3}
C.{x|l<x<4}D.{x|l<x<4}
【答案】Q
解析:/U8=[1,3]U(2,4)=[1,4)故選:c
9.(2020新高考〃卷(海南卷)?第1題)設(shè)集合4={2,3,5,7},B={1,2,3,5,8},則4["18=
()
A.{1,3,5,7}B.{2,3}C.{2,3,5}D.{1,2,3,5,7,8)
【答案】C
解析:因?yàn)?={2,3,5,7},3={1,2,3,5,8},所以40丁={2,3,5},故選:C
10.(2021年高考全國(guó)甲卷理科?第1題)設(shè)集合A/={x[0<x<4},N=<>,則A/C|N=
()
A.<x0<x<>B.?x:Wx<4,C.1x|4<x<5jD.1x|0<x<5}
【答案】B
解析:因?yàn)镸={x[0<x<4},N={x|;〈x〈5},所以McN={x[g<x<4},
故選:B.
11.(2019年高考數(shù)學(xué)課標(biāo)HI卷理科?第1題)已知集合4={—1,0,1,2},B^{x\x2^l},則=
()
A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}
【答案】A
【解析】因?yàn)?={-1,0,1,2},3={+區(qū)上這1},所以4nB={-1,0,1},故選A.
12.(2019年高考數(shù)學(xué)課標(biāo)全國(guó)H卷理科?第1題)設(shè)集合/={x|f_5X+6>0},6={小一1<0},則
A[}B=()
A.(-oo,l)B.(一2,1)C.(一3,—1)D.(3,+8)
【答案】A
【解析】/=卜旨一5x+6>0}={x|xW2或x23},5={x[x-l<0}={x|x<l},
故ND8={x|x<1},故選A.
13.(2019年高考數(shù)學(xué)課標(biāo)全國(guó)I卷理科?第1題)已知集合河={-4<x<2},N={x|x2—x—6<0},
則M|?N=()
A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}
【答案】C
解析:
:N={x|f%-6<0}={x|(x+2)(x—3)<0}={x|-2<x<3},A/ClN={x[—2<x<2}.
14.(2018年高考數(shù)學(xué)課標(biāo)HI卷(理)?第1題)已知集合4={x|x—120},5={0,1,2},則=
()
A.{0}B.{1}C.{1,2}D.{0,1,2)
【答案】C
解析:^={x|x-l>0}={x|x>l},5={0,1,2},故/。8={1,2},故選C.
15.(2018年高考數(shù)學(xué)課標(biāo)卷I(理)?第2題)己知集合^={x|x2-x-2>0},則?/=
()
A.1x|-l<x<2}B.|x|-l<x<2}
C.{x|x<-l}U{x|x>2}D.{x|xK-1}U{X|XN2}
【答案】B
解析:集合/={X卜2+x-2>0},可得Z={x[x<-1或x〉2},則。;力={x卜1<xW2},故選:B.
16.(2016高考數(shù)學(xué)課標(biāo)III卷理科?第1題)設(shè)集合5=卜|(》一2)1-3)20},7=卜,〉0},則507=
()
A.[2,3]B.(-co,2]U[3,+8)C.[3,+co)D.(0,2]U[3,+00)
【答案】D
【解析】由(x—2)(x—3),0解得x23或xW2,所以S={x|xW2或x23},所以
Sri7={x|0<xW2或x>3},故選D.
17.(2016高考數(shù)學(xué)課標(biāo)II卷理科?第2題)已知集合/={1,2,3},8={x|(x+l)(x—2)<0,xeZ},則
NU5=()
a{1}R{1,2}「{0,1,23}0{一1,0,123}
【答案】c
【解析】8={x|(x+l)(x—2)<0,xeZ}={0,l},又3={1,2,3},所以/U8=2,1,2,3},故選心
18.(2016高考數(shù)學(xué)課標(biāo)I卷理科?第1題)設(shè)集合/={x|Y-4x+3<0},8="|2%一3〉0},則ND8=
)
3333
(A)(-3,--)(B)(-3,-)(C)(1,-)(D)(-,3)
【答案】D
【解析】Z=_4》+3<o}={x[l<x<3},8={x|2x-3>O}={x|x>m.
3
故4n8=(x—<x<3}.故選D.
2
19.(2015高考數(shù)學(xué)新課標(biāo)2理科?第1題)已知集合〃={-2,-1,0,1,2},8={x|(x—l)(x+2<0},則
A^B=()
A.4={一1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}
【答案】4
解析:由已知得3={x卜2Vx<1},故4口8={-1,0},故選A.
20.(2014高考數(shù)學(xué)課標(biāo)2理科?第1題)設(shè)集合M={0,1,2},N={x|x2_3x+2W0},則MC|N=
()
A.{1}B.{2}C.{0,1}D.{1,2}
【答案】0
解析:因?yàn)镹=/k|/<x<2},所以McN={1,2},故選D.
21.(2014高考數(shù)學(xué)課標(biāo)1理科?第1題)已知集合4={x|¥-2》—320},8=3—24%<2},則〃門8
=()
A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)
【答案】/
解析:..工二{xx2-2%-3>0}={x|x4-1或x23},8=卜卜2<x<2|,
:.AcB={x卜2WxW1},選A.
題型四:集合的綜合問(wèn)題
1.(2020年高考數(shù)學(xué)課標(biāo)I卷理科?第2題)設(shè)集合4={X|X2-4V0},B={x|2x+a40},且2nB={x|-2qvl},
則
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全生產(chǎn)應(yīng)知應(yīng)會(huì)知識(shí)習(xí)題庫(kù)及答案
- 加盟費(fèi)合同范本
- 廠房場(chǎng)地租賃合同范本
- 出資不經(jīng)營(yíng)合同范本
- 《紅樓夢(mèng)》讀書心得體會(huì)初中
- 勞務(wù)合同范本2003
- ktv領(lǐng)班簽約合同范本
- 包裝印刷合同范本
- ktv酒水合同范本
- 出租簡(jiǎn)易沙發(fā)合同范本
- 產(chǎn)業(yè)園運(yùn)營(yíng)服務(wù)方案
- 公司工程竣工內(nèi)部預(yù)驗(yàn)收實(shí)施細(xì)則
- 監(jiān)理日志表(標(biāo)準(zhǔn)模版)
- H3C-CAS虛擬化平臺(tái)詳細(xì)介紹
- 藥房品種類別及數(shù)量清單
- 玻璃工藝學(xué)第4章 玻璃的性質(zhì)
- 四川省藥械集中采購(gòu)及醫(yī)藥價(jià)格監(jiān)測(cè)平臺(tái)操作指引
- 機(jī)關(guān)檔案管理工作培訓(xùn)PPT課件
- 大學(xué)生安全教育課件(ppt共41張)
- 初中物理人教版八年級(jí)下冊(cè) 第1節(jié)牛頓第一定律 課件
- 網(wǎng)站培訓(xùn)內(nèi)容trswcm65表單選件用戶手冊(cè)
評(píng)論
0/150
提交評(píng)論