版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年陜西省商洛市中考一模數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.某單位組織職工開展植樹活動,植樹量與人數(shù)之間關系如圖,下列說法不正確的是()A.參加本次植樹活動共有30人 B.每人植樹量的眾數(shù)是4棵C.每人植樹量的中位數(shù)是5棵 D.每人植樹量的平均數(shù)是5棵2.如圖,△ABC是⊙O的內接三角形,AD⊥BC于D點,且AC=5,CD=3,BD=4,則⊙O的直徑等于()A.52 B.32 C.53.一個關于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是()A.x>1 B.x≥1 C.x>3 D.x≥34.如圖,在下列條件中,不能判定直線a與b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°5.小明家1至6月份的用水量統(tǒng)計如圖所示,關于這組數(shù)據(jù),下列說法錯誤的是().A.眾數(shù)是6噸 B.平均數(shù)是5噸 C.中位數(shù)是5噸 D.方差是6.已知3a﹣2b=1,則代數(shù)式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣37.一次函數(shù)的圖像不經(jīng)過的象限是:()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知正多邊形的一個外角為36°,則該正多邊形的邊數(shù)為().A.12 B.10 C.8 D.69.已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結論正確的是()A.x1+x2=1 B.x1?x2=﹣1 C.|x1|<|x2| D.x12+x1=10.如圖,等腰△ABC的底邊BC與底邊上的高AD相等,高AD在數(shù)軸上,其中點A,D分別對應數(shù)軸上的實數(shù)﹣2,2,則AC的長度為()A.2 B.4 C.2 D.4二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖(1),將一個正六邊形各邊延長,構成一個正六角星形AFBDCE,它的面積為1;取△ABC和△DEF各邊中點,連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和△D1E1F1各邊中點,連接成正六角星形A2F2B2D2C2E2,如圖(3)中陰影部分;如此下去…,則正六角星形A4F4B4D4C4E4的面積為_________________.12.如果一個矩形的面積是40,兩條對角線夾角的正切值是,那么它的一條對角線長是__________.13.如圖,已知△ABC中,∠ABC=50°,P為△ABC內一點,過點P的直線MN分別交AB、BC于點M、N.若M在PA的中垂線上,N在PC的中垂線上,則∠APC的度數(shù)為_____14.如圖,CD是⊙O直徑,AB是弦,若CD⊥AB,∠BCD=25°,則∠AOD=_____°.15.北京奧運會國家體育場“鳥巢”的建筑面積為258000平方米,那么258000用科學記數(shù)法可表示為.16.如圖,矩形ABCD中,AB=3,對角線AC,BD相交于點O,AE垂直平分OB于點E,則AD的長為____________.三、解答題(共8題,共72分)17.(8分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下面是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬,水面最深地方的高度為4cm,求這個圓形截面的半徑.18.(8分)為了進一步改善環(huán)境,鄭州市今年增加了綠色自行車的數(shù)量,已知A型號的自行車比B型號的自行車的單價低30元,買8輛A型號的自行車與買7輛B型號的自行車所花費用相同.
(1)A,B兩種型號的自行車的單價分別是多少?
(2)若購買A,B兩種自行車共600輛,且A型號自行車的數(shù)量不多于B型號自行車的一半,請你給出一種最省錢的方案,并求出該方案所需要的費用.19.(8分)為獎勵優(yōu)秀學生,某校準備購買一批文具袋和圓規(guī)作為獎品,已知購買1個文具袋和2個圓規(guī)需21元,購買2個文具袋和3個圓規(guī)需39元。求文具袋和圓規(guī)的單價。學校準備購買文具袋20個,圓規(guī)若干,文具店給出兩種優(yōu)惠方案:方案一:購買一個文具袋還送1個圓規(guī)。方案二:購買圓規(guī)10個以上時,超出10個的部分按原價的八折優(yōu)惠,文具袋不打折.①設購買面規(guī)m個,則選擇方案一的總費用為______,選擇方案二的總費用為______.②若學校購買圓規(guī)100個,則選擇哪種方案更合算?請說明理由.20.(8分)如圖,在平面直角坐標系中,直線y=kx+3與軸、軸分別相交于點A、B,并與拋物線的對稱軸交于點,拋物線的頂點是點.(1)求k和b的值;(2)點G是軸上一點,且以點、C、為頂點的三角形與△相似,求點G的坐標;(3)在拋物線上是否存在點E:它關于直線AB的對稱點F恰好在y軸上.如果存在,直接寫出點E的坐標,如果不存在,試說明理由.21.(8分)如圖,方格紙中每個小正方形的邊長均為1,線段AB的兩個端點均在小正方形的頂點上.在圖中畫出以線段AB為一邊的矩形ABCD(不是正方形),且點C和點D均在小正方形的頂點上;在圖中畫出以線段AB為一腰,底邊長為2的等腰三角形ABE,點E在小正方形的頂點上,連接CE,請直接寫出線段CE的長.22.(10分)的除以20與18的差,商是多少?23.(12分)為了解某校學生的身高情況,隨機抽取該校男生、女生進行抽樣調查.已知抽取的樣本中男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:組別身高Ax<160B160≤x<165C165≤x<170D170≤x<175Ex≥175根據(jù)圖表提供的信息,回答下列問題:(1)樣本中,男生的身高眾數(shù)在組,中位數(shù)在組;(2)樣本中,女生身高在E組的有人,E組所在扇形的圓心角度數(shù)為;(3)已知該校共有男生600人,女生480人,請估讓身高在165≤x<175之間的學生約有多少人?24.已知如圖①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一條直線上,點M,N,F分別為AB,ED,AD的中點,∠B=∠EDC=45°,(1)求證MF=NF(2)當∠B=∠EDC=30°,A,C,D在同一條直線上或不在同一條直線上,如圖②,圖③這兩種情況時,請猜想線段MF,NF之間的數(shù)量關系.(不必證明)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題解析:A、∵4+10+8+6+2=30(人),∴參加本次植樹活動共有30人,結論A正確;B、∵10>8>6>4>2,∴每人植樹量的眾數(shù)是4棵,結論B正確;C、∵共有30個數(shù),第15、16個數(shù)為5,∴每人植樹量的中位數(shù)是5棵,結論C正確;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植樹量的平均數(shù)約是4.73棵,結論D不正確.故選D.考點:1.條形統(tǒng)計圖;2.加權平均數(shù);3.中位數(shù);4.眾數(shù).2、A【解析】
連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【詳解】解:如圖,連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D點,AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE與Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴ABAD即2R=AB?ACAD=4∴⊙O的直徑等于52故答案選:A.【點睛】本題主要考查了圓周角定理、勾股定理,解題的關鍵是掌握輔助線的作法.3、C【解析】試題解析:一個關于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是x>1.故選C.考點:在數(shù)軸上表示不等式的解集.4、C【解析】
解:A.∵∠1與∠2是直線a,b被c所截的一組同位角,∴∠1=∠2,可以得到a∥b,∴不符合題意B.∵∠2與∠3是直線a,b被c所截的一組內錯角,∴∠2=∠3,可以得到a∥b,∴不符合題意,C.∵∠3與∠5既不是直線a,b被任何一條直線所截的一組同位角,內錯角,∴∠3=∠5,不能得到a∥b,∴符合題意,D.∵∠3與∠4是直線a,b被c所截的一組同旁內角,∴∠3+∠4=180°,可以得到a∥b,∴不符合題意,故選C.【點睛】本題考查平行線的判定,難度不大.5、C【解析】試題分析:根據(jù)眾數(shù)、平均數(shù)、中位數(shù)、方差:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].數(shù)據(jù):3,4,5,6,6,6,中位數(shù)是5.5,故選C考點:1、方差;2、平均數(shù);3、中位數(shù);4、眾數(shù)6、B【解析】
先變形,再整體代入,即可求出答案.【詳解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故選:B.【點睛】本題考查了求代數(shù)式的值,能夠整體代入是解此題的關鍵.7、C【解析】試題分析:根據(jù)一次函數(shù)y=kx+b(k≠0,k、b為常數(shù))的圖像與性質可知:當k>0,b>0時,圖像過一二三象限;當k>0,b<0時,圖像過一三四象限;當k<0,b>0時,圖像過一二四象限;當k<0,b<0,圖像過二三四象限.這個一次函數(shù)的k=<0與b=1>0,因此不經(jīng)過第三象限.答案為C考點:一次函數(shù)的圖像8、B【解析】
利用多邊形的外角和是360°,正多邊形的每個外角都是36°,即可求出答案.【詳解】解:360°÷36°=10,所以這個正多邊形是正十邊形.故選:B.【點睛】本題主要考查了多邊形的外角和定理.是需要識記的內容.9、D【解析】【分析】直接利用根與系數(shù)的關系對A、B進行判斷;由于x1+x2<0,x1x2<0,則利用有理數(shù)的性質得到x1、x2異號,且負數(shù)的絕對值大,則可對C進行判斷;利用一元二次方程解的定義對D進行判斷.【詳解】根據(jù)題意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B選項錯誤;∵x1+x2<0,x1x2<0,∴x1、x2異號,且負數(shù)的絕對值大,故C選項錯誤;∵x1為一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D選項正確,故選D.【點睛】本題考查了一元二次方程的解、一元二次方程根與系數(shù)的關系,熟練掌握相關內容是解題的關鍵.10、C【解析】
根據(jù)等腰三角形的性質和勾股定理解答即可.【詳解】解:∵點A,D分別對應數(shù)軸上的實數(shù)﹣2,2,∴AD=4,∵等腰△ABC的底邊BC與底邊上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故選:C.【點睛】此題考查等腰三角形的性質,注意等腰三角形的三線合一,熟練運用勾股定理.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】∵正六角星形A2F2B2D2C2E2邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A2F2B2D2C2E2面積是正六角星形A1F1B1D1C1E面積的.同理∵正六角星形A4F4B4D4C4E4邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A4F4B4D4C4E4面積是正六角星形A1F1B1D1C1E面積的.12、1.【解析】
如圖,作BH⊥AC于H.由四邊形ABCD是矩形,推出OA=OC=OD=OB,設OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由題意:21a×4a=40,求出a即可解決問題.【詳解】如圖,作BH⊥AC于H.∵四邊形ABCD是矩形,∴OA=OC=OD=OB,設OA=OC=OD=OB=5a.∵tan∠BOH,∴BH=4a,OH=3a,由題意:21a×4a=40,∴a=1,∴AC=1.故答案為:1.【點睛】本題考查了矩形的性質、解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,學會利用參數(shù)構建方程解決問題.13、115°【解析】
根據(jù)三角形的內角和得到∠BAC+∠ACB=130°,根據(jù)線段的垂直平分線的性質得到AM=PM,PN=CN,由等腰三角形的性質得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,于是得到結論.【詳解】∵∠ABC=50°,∴∠BAC+∠ACB=130°,∵若M在PA的中垂線上,N在PC的中垂線上,∴AM=PM,PN=CN,∴∠MAP=∠APM,∠CPN=∠PCN,∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,∴∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,∴∠APC=115°,故答案為:115°【點睛】本題考查了線段的垂直平分線的性質,等腰三角形的性質,三角形的內角和,熟練掌握線段的垂直平分線的性質是解題的關鍵.14、50【解析】
由CD是⊙O的直徑,弦AB⊥CD,根據(jù)垂徑定理的即可求得
=,又由圓周角定理,可得∠AOD=50°.【詳解】∵CD是⊙O的直徑,弦AB⊥CD,
∴=,
∵∠BCD=25°=,
∴∠AOD=2∠BCD=50°,
故答案為50【點睛】本題考查角度的求解,解題的關鍵是利用垂徑定理.15、2.58×1【解析】科學記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.258000=2.58×1.16、【解析】試題解析:∵四邊形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD=.【點睛】此題考查了矩形的性質、等邊三角形的判定與性質、線段垂直平分線的性質、勾股定理;熟練掌握矩形的性質,證明三角形是等邊三角形是解決問題的關鍵.三、解答題(共8題,共72分)17、這個圓形截面的半徑為10cm.【解析】分析:先作輔助線,利用垂徑定理求出半徑,再根據(jù)勾股定理計算.解答:解:如圖,OE⊥AB交AB于點D,則DE=4,AB=16,AD=8,設半徑為R,∴OD=OE-DE=R-4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R-4)2,解得,R=10cm.18、(1)A型自行車的單價為210元,B型自行車的單價為240元.(2)最省錢的方案是購買A型自行車200輛,B型自行車的400輛,總費用為138000元.【解析】分析:(1)設A型自行車的單價為x元,B型自行車的單價為y元,構建方程組即可解決問題.(2)設購買A型自行車a輛,B型自行車的(600-a)輛.總費用為w元.構建一次函數(shù),利用一次函數(shù)的性質即可解決問題.詳解:(1)設A型自行車的單價為x元,B型自行車的單價為y元,
由題意,
解得,
型自行車的單價為210元,B型自行車的單價為240元.
(2)設購買A型自行車a輛,B型自行車的輛.總費用為w元.
由題意,
,
隨a的增大而減小,
,
,
∴當時,w有最小值,最小值,
∴最省錢的方案是購買A型自行車200輛,B型自行車的400輛,總費用為138000元.點睛:本題考查一次函數(shù)的應用,二元一次方程組的應用等知識,解題的關鍵是學會設未知數(shù),構建方程組或一次函數(shù)解決實際問題,屬于中考??碱}型.19、(1)文具袋的單價為15元,圓規(guī)單價為3元;(2)①方案一總費用為元,方案二總費用為元;②方案一更合算.【解析】
(1)設文具袋的單價為x元/個,圓規(guī)的單價為y元/個,根據(jù)“購買1個文具袋和2個圓規(guī)需21元;購買2個文具袋和3個圓規(guī)需39元”,即可得出關于x,y的二元一次方程組,解之即可得出結論;
(2)根據(jù)總價=單價×數(shù)量結合兩種優(yōu)惠方案,設購買面規(guī)m個,分別求出選擇方案一和選擇方案二所需費用,然后代入m=100計算比較后即可得出結論.【詳解】(1)設文具袋的單價為x元,圓規(guī)單價為y元。由題意得解得答:文具袋的單價為15元,圓規(guī)單價為3元。(2)①設圓規(guī)m個,則方案一總費用為:元方案二總費用元故答案為:元;②買圓規(guī)100個時,方案一總費用:元,方案二總費用:元,∴方案一更合算。【點睛】本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.20、(1)k=-,b=1;(1)(0,1)和【解析】分析:(1)由直線經(jīng)過點,可得.由拋物線的對稱軸是直線,可得,進而得到A、B、D的坐標,然后分兩種情況討論即可;(3)設E(a,),E關于直線AB的對稱點E′為(0,b),EE′與AB的交點為P.則EE′⊥AB,P為EE′的中點,列方程組,求解即可得到a的值,進而得到答案.詳解:(1)由直線經(jīng)過點,可得.由拋物線的對稱軸是直線,可得.∵直線與x軸、y軸分別相交于點、,∴點的坐標是,點的坐標是.∵拋物線的頂點是點,∴點的坐標是.∵點是軸上一點,∴設點的坐標是.∵△BCG與△BCD相似,又由題意知,,∴△BCG與△相似有兩種可能情況:①如果,那么,解得,∴點的坐標是.②如果,那么,解得,∴點的坐標是.綜上所述:符合要求的點有兩個,其坐標分別是和.(3)設E(a,),E關于直線AB的對稱點E′為(0,b),EE′與AB的交點為P,則EE′⊥AB,P為EE′的中點,∴,整理得:,∴(a-1)(a+1)=0,解得:a=-1或a=1.當a=-1時,=;當a=1時,=;∴點的坐標是或.點睛:本題是二次函數(shù)的綜合題.考查了二次函數(shù)的性質、解析式的求法以及相似三角形的性質.解答(1)問的關鍵是要分類討論,解答(3)的關鍵是利用兩直線垂直則k的乘積為-1和P是EE′的中點.21、作圖見解析;CE=4.【解析】分析:利用數(shù)形結合的思想解決問題即可.詳解:如圖所示,矩形ABCD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小程序開發(fā)與應用服務合同
- 寫俄語商務合同范例
- 吊機維修合同模板
- 2024年定制家具供貨合同
- 代辦水果合同模板
- 體育健身產(chǎn)業(yè)智能健身器材研發(fā)計劃
- 人工智能自然語言處理服務合同
- 出售平臺合同范例
- 辦公廠房修建合同范例
- 會展活動預算合同范例
- 左宗棠生平及評價
- 急性心肌梗死圍手術期的安全護理
- c90溫控表說明書
- 智能除草機器人
- 宮外孕破裂出血護理查房
- 諾如病毒應急演練方案
- 汽車專業(yè)的職業(yè)生涯規(guī)劃書
- DB23T 3676.4-2023 室內運動冰場制冰要求 第4部分 冰盤
- 農(nóng)耕研學基地可行性方案
- 食堂員工安全知識培訓
- PCN、ECN變更管理流程
評論
0/150
提交評論