版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
重慶開(kāi)州區(qū)2024屆中考數(shù)學(xué)適應(yīng)性模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.在平面直角坐標(biāo)系中,點(diǎn)是線段上一點(diǎn),以原點(diǎn)為位似中心把放大到原來(lái)的兩倍,則點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為()A. B.或C. D.或2.已知在一個(gè)不透明的口袋中有4個(gè)形狀、大小、材質(zhì)完全相同的球,其中1個(gè)紅色球,3個(gè)黃色球.從口袋中隨機(jī)取出一個(gè)球(不放回),接著再取出一個(gè)球,則取出的兩個(gè)都是黃色球的概率為()A.34 B.23 C.93.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長(zhǎng)是()A.2 B. C. D.24.下列說(shuō)法錯(cuò)誤的是()A.的相反數(shù)是2 B.3的倒數(shù)是C. D.,0,4這三個(gè)數(shù)中最小的數(shù)是05.一個(gè)不透明的布袋里裝有5個(gè)只有顏色不同的球,其中2個(gè)紅球、3個(gè)白球.從布袋中一次性摸出兩個(gè)球,則摸出的兩個(gè)球中至少有一個(gè)紅球的概率是()A. B. C. D.6.下列運(yùn)算中,計(jì)算結(jié)果正確的是()A.a(chǎn)2?a3=a6B.a(chǎn)2+a3=a5C.(a2)3=a6D.a(chǎn)12÷a6=a27.的化簡(jiǎn)結(jié)果為A.3 B. C. D.98.如圖,正方形ABCD內(nèi)接于圓O,AB=4,則圖中陰影部分的面積是()A. B. C. D.9.如圖,在平面直角坐標(biāo)系中,是反比例函數(shù)的圖像上一點(diǎn),過(guò)點(diǎn)做軸于點(diǎn),若的面積為2,則的值是()A.-2 B.2 C.-4 D.410.如圖,點(diǎn)A,B,C在⊙O上,∠ACB=30°,⊙O的半徑為6,則的長(zhǎng)等于()A.π B.2π C.3π D.4π二、填空題(共7小題,每小題3分,滿分21分)11.如圖,四邊形ABCD是菱形,∠BAD=60°,AB=6,對(duì)角線AC與BD相交于點(diǎn)O,點(diǎn)E在AC上,若OE=2,則CE的長(zhǎng)為_(kāi)______12.一個(gè)n邊形的每個(gè)內(nèi)角都為144°,則邊數(shù)n為_(kāi)_____.13.計(jì)算的結(jié)果是_____14.如圖,在Rt△ABC中,∠ACB=90°,D、E、F分別是AB、BC、CA的中點(diǎn),若CD=3cm,則EF=________cm.15.若關(guān)于x的方程x2-x+sinα=0有兩個(gè)相等的實(shí)數(shù)根,則銳角α的度數(shù)為_(kāi)__.16.若一個(gè)多邊形的每一個(gè)外角都等于40°,則這個(gè)多邊形的邊數(shù)是.17.如圖,直線y=2x+4與x,y軸分別交于A,B兩點(diǎn),以O(shè)B為邊在y軸右側(cè)作等邊三角形OBC,將點(diǎn)C向左平移,使其對(duì)應(yīng)點(diǎn)C′恰好落在直線AB上,則點(diǎn)C′的坐標(biāo)為.三、解答題(共7小題,滿分69分)18.(10分)如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+3交x軸于B、C兩點(diǎn)(點(diǎn)B在左,點(diǎn)C在右),交y軸于點(diǎn)A,且OA=OC,B(﹣1,0).(1)求此拋物線的解析式;(2)如圖2,點(diǎn)D為拋物線的頂點(diǎn),連接CD,點(diǎn)P是拋物線上一動(dòng)點(diǎn),且在C、D兩點(diǎn)之間運(yùn)動(dòng),過(guò)點(diǎn)P作PE∥y軸交線段CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段PE長(zhǎng)為d,寫(xiě)出d與t的關(guān)系式(不要求寫(xiě)出自變量t的取值范圍);(3)如圖3,在(2)的條件下,連接BD,在BD上有一動(dòng)點(diǎn)Q,且DQ=CE,連接EQ,當(dāng)∠BQE+∠DEQ=90°時(shí),求此時(shí)點(diǎn)P的坐標(biāo).19.(5分)某中學(xué)開(kāi)展了“手機(jī)伴我健康行”主題活動(dòng),他們隨機(jī)抽取部分學(xué)生進(jìn)行“使用手機(jī)目的”和“每周使用手機(jī)的時(shí)間”的問(wèn)卷調(diào)查,并繪制成如圖①,②所示的統(tǒng)計(jì)圖,已知“查資料”的人數(shù)是40人.
請(qǐng)你根據(jù)圖中信息解答下列問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,“玩游戲”對(duì)應(yīng)的圓心角度數(shù)是_____°;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有學(xué)生1200人,試估計(jì)每周使用手機(jī)時(shí)間在2小時(shí)以上(不含2小時(shí))的人數(shù).20.(8分)在正方形ABCD中,動(dòng)點(diǎn)E,F(xiàn)分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng).(1)如圖1,當(dāng)點(diǎn)E在邊DC上自D向C移動(dòng),同時(shí)點(diǎn)F在邊CB上自C向B移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,請(qǐng)你寫(xiě)出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由;(2)如圖2,當(dāng)E,F(xiàn)分別在邊CD,BC的延長(zhǎng)線上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答“是”或“否”,不需證明);連接AC,請(qǐng)你直接寫(xiě)出△ACE為等腰三角形時(shí)CE:CD的值;(3)如圖3,當(dāng)E,F(xiàn)分別在直線DC,CB上移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,由于點(diǎn)E,F(xiàn)的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請(qǐng)你畫(huà)出點(diǎn)P運(yùn)動(dòng)路徑的草圖.若AD=2,試求出線段CP的最大值.21.(10分)如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O.畫(huà)出△AOB平移后的三角形,其平移后的方向?yàn)樯渚€AD的方向,平移的距離為AD的長(zhǎng).觀察平移后的圖形,除了矩形ABCD外,還有一種特殊的平行四邊形?請(qǐng)證明你的結(jié)論.22.(10分)在平面直角坐標(biāo)系中,點(diǎn),,將直線平移與雙曲線在第一象限的圖象交于、兩點(diǎn).(1)如圖1,將繞逆時(shí)針旋轉(zhuǎn)得與對(duì)應(yīng),與對(duì)應(yīng)),在圖1中畫(huà)出旋轉(zhuǎn)后的圖形并直接寫(xiě)出、坐標(biāo);(2)若,①如圖2,當(dāng)時(shí),求的值;②如圖3,作軸于點(diǎn),軸于點(diǎn),直線與雙曲線有唯一公共點(diǎn)時(shí),的值為.23.(12分)已知關(guān)于x的方程.(1)當(dāng)該方程的一個(gè)根為1時(shí),求a的值及該方程的另一根;(2)求證:不論a取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根.24.(14分)如圖,在規(guī)格為8×8的邊長(zhǎng)為1個(gè)單位的正方形網(wǎng)格中(每個(gè)小正方形的邊長(zhǎng)為1),△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,且直線m、n互相垂直.(1)畫(huà)出△ABC關(guān)于直線n的對(duì)稱(chēng)圖形△A′B′C′;(2)直線m上存在一點(diǎn)P,使△APB的周長(zhǎng)最?。虎僭谥本€m上作出該點(diǎn)P;(保留畫(huà)圖痕跡)②△APB的周長(zhǎng)的最小值為.(直接寫(xiě)出結(jié)果)
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解析】分析:根據(jù)位似變換的性質(zhì)計(jì)算即可.詳解:點(diǎn)P(m,n)是線段AB上一點(diǎn),以原點(diǎn)O為位似中心把△AOB放大到原來(lái)的兩倍,則點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故選B.點(diǎn)睛:本題考查的是位似變換、坐標(biāo)與圖形的性質(zhì),在平面直角坐標(biāo)系中,如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于k或-k.2、D【解析】試題分析:列舉出所有情況,看取出的兩個(gè)都是黃色球的情況數(shù)占總情況數(shù)的多少即可.試題解析:畫(huà)樹(shù)狀圖如下:共有12種情況,取出2個(gè)都是黃色的情況數(shù)有6種,所以概率為12故選D.考點(diǎn):列表法與樹(shù)狀法.3、C【解析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質(zhì),即可求得PE的值,繼而求得OP的長(zhǎng),然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長(zhǎng).【詳解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,點(diǎn)M是OP的中點(diǎn),∴DM=OP=.故選C.考點(diǎn):角平分線的性質(zhì);含30度角的直角三角形;直角三角形斜邊上的中線;勾股定理.4、D【解析】試題分析:﹣2的相反數(shù)是2,A正確;3的倒數(shù)是,B正確;(﹣3)﹣(﹣5)=﹣3+5=2,C正確;﹣11,0,4這三個(gè)數(shù)中最小的數(shù)是﹣11,D錯(cuò)誤,故選D.考點(diǎn):1.相反數(shù);2.倒數(shù);3.有理數(shù)大小比較;4.有理數(shù)的減法.5、D【解析】
畫(huà)出樹(shù)狀圖得出所有等可能的情況數(shù),找出恰好是兩個(gè)紅球的情況數(shù),即可求出所求的概率.【詳解】畫(huà)樹(shù)狀圖如下:一共有20種情況,其中兩個(gè)球中至少有一個(gè)紅球的有14種情況,因此兩個(gè)球中至少有一個(gè)紅球的概率是:.故選:D.【點(diǎn)睛】此題考查了列表法與樹(shù)狀圖法,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.6、C【解析】
根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;冪的乘方,底數(shù)不變指數(shù)相減;同底數(shù)冪相除,底數(shù)不變指數(shù)相減對(duì)各選項(xiàng)分析判斷即可得解.【詳解】A、a2?a3=a2+3=a5,故本選項(xiàng)錯(cuò)誤;B、a2+a3不能進(jìn)行運(yùn)算,故本選項(xiàng)錯(cuò)誤;C、(a2)3=a2×3=a6,故本選項(xiàng)正確;D、a12÷a6=a12﹣6=a6,故本選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】本題考查了同底數(shù)冪的乘法、冪的乘方、同底數(shù)冪的除法,熟練掌握運(yùn)算法則是解題的關(guān)鍵.7、A【解析】試題分析:根據(jù)二次根式的計(jì)算化簡(jiǎn)可得:.故選A.考點(diǎn):二次根式的化簡(jiǎn)8、B【解析】
連接OA、OB,利用正方形的性質(zhì)得出OA=ABcos45°=2,根據(jù)陰影部分的面積=S⊙O-S正方形ABCD列式計(jì)算可得.【詳解】解:連接OA、OB,∵四邊形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×=2,所以陰影部分的面積=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故選B.【點(diǎn)睛】本題主要考查扇形的面積計(jì)算,解題的關(guān)鍵是熟練掌握正方形的性質(zhì)和圓的面積公式.9、C【解析】
根據(jù)反比例函數(shù)k的幾何意義,求出k的值即可解決問(wèn)題【詳解】解:∵過(guò)點(diǎn)P作PQ⊥x軸于點(diǎn)Q,△OPQ的面積為2,
∴||=2,
∵k<0,
∴k=-1.
故選:C.【點(diǎn)睛】本題考查反比例函數(shù)k的幾何意義,解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考??碱}型.10、B【解析】
根據(jù)圓周角得出∠AOB=60°,進(jìn)而利用弧長(zhǎng)公式解答即可.【詳解】解:∵∠ACB=30°,∴∠AOB=60°,∴的長(zhǎng)==2π,故選B.【點(diǎn)睛】此題考查弧長(zhǎng)的計(jì)算,關(guān)鍵是根據(jù)圓周角得出∠AOB=60°.二、填空題(共7小題,每小題3分,滿分21分)11、5或【解析】分析:由菱形的性質(zhì)證出△ABD是等邊三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.詳解:∵四邊形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∴△ABD是等邊三角形,∴BD=AB=6,∴∴∴∵點(diǎn)E在AC上,∴當(dāng)E在點(diǎn)O左邊時(shí)當(dāng)點(diǎn)E在點(diǎn)O右邊時(shí)∴或;故答案為或.點(diǎn)睛:考查菱形的性質(zhì),注意分類(lèi)討論思想在數(shù)學(xué)中的應(yīng)用,不要漏解.12、10【解析】
解:因?yàn)檎噙呅蔚拿總€(gè)內(nèi)角都相等,每個(gè)外角都相等,根據(jù)相鄰兩個(gè)內(nèi)角和外角關(guān)系互補(bǔ),可以求出這個(gè)多邊形的每個(gè)外角等于36°,因?yàn)槎噙呅蔚耐饨呛褪?60°,所以這個(gè)多邊形的邊數(shù)等于360°÷36°=10,故答案為:1013、【解析】【分析】根據(jù)二次根式的運(yùn)算法則進(jìn)行計(jì)算即可求出答案.【詳解】==,故答案為.【點(diǎn)睛】本題考查二次根式的運(yùn)算,解題的關(guān)鍵是熟練運(yùn)用二次根式的運(yùn)算法則.14、3【解析】試題分析:根據(jù)點(diǎn)D為AB的中點(diǎn)可得:CD為直角三角形斜邊上的中線,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AB=2CD=6,根據(jù)E、F分別為中點(diǎn)可得:EF為△ABC的中位線,根據(jù)中位線的性質(zhì)可得:EF=AB=3.考點(diǎn):(1)、直角三角形的性質(zhì);(2)、中位線的性質(zhì)15、30°【解析】試題解析:∵關(guān)于x的方程有兩個(gè)相等的實(shí)數(shù)根,∴解得:∴銳角α的度數(shù)為30°;故答案為30°.16、9【解析】解:360÷40=9,即這個(gè)多邊形的邊數(shù)是917、(﹣2,2)【解析】試題分析:∵直線y=2x+4與y軸交于B點(diǎn),∴x=0時(shí),得y=4,∴B(0,4).∵以O(shè)B為邊在y軸右側(cè)作等邊三角形OBC,∴C在線段OB的垂直平分線上,∴C點(diǎn)縱坐標(biāo)為2.將y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐標(biāo)為(﹣2,2).考點(diǎn):2.一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征;2.等邊三角形的性質(zhì);3.坐標(biāo)與圖形變化-平移.三、解答題(共7小題,滿分69分)18、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解析】
(1)由拋物線y=ax2+bx+3與y軸交于點(diǎn)A,可求得點(diǎn)A的坐標(biāo),又OA=OC,可求得點(diǎn)C的坐標(biāo),然后分別代入B,C的坐標(biāo)求出a,b,即可求得二次函數(shù)的解析式;(2)首先延長(zhǎng)PE交x軸于點(diǎn)H,現(xiàn)將解析式換為頂點(diǎn)解析式求得D(1,4),設(shè)直線CD的解析式為y=kx+b,再將點(diǎn)C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據(jù)d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于點(diǎn)K,作QM∥x軸交DK于點(diǎn)T,延長(zhǎng)PE、EP交OC于H、交QM于M,作ER⊥DK于點(diǎn)R,記QE與DK的交點(diǎn)為N,根據(jù)題意在(2)的條件下先證明△DQT≌△ECH,再根據(jù)全等三角形的性質(zhì)即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【詳解】解:(1)當(dāng)x=0時(shí),y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)B(﹣1,0),C(3,0)∴,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)如圖1,延長(zhǎng)PE交x軸于點(diǎn)H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線CD的解析式為y=kx+b,將點(diǎn)C(3,0)、D(1,4)代入,得:,解得:,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如圖2,作DK⊥OC于點(diǎn)K,作QM∥x軸交DK于點(diǎn)T,延長(zhǎng)PE、EP交OC于H、交QM于M,作ER⊥DK于點(diǎn)R,記QE與DK的交點(diǎn)為N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=,∴P(,).【點(diǎn)睛】本題考查了二次函數(shù)的綜合題,解題的關(guān)鍵是熟練的掌握二次函數(shù)的相關(guān)知識(shí)點(diǎn).19、(1)126;(2)作圖見(jiàn)解析(3)768【解析】試題分析:(1)根據(jù)扇形統(tǒng)計(jì)圖求出所占的百分比,然后乘以360°即可;(2)利用“查資料”人人數(shù)是40人,查資料”人占總?cè)藬?shù)40%,求出總?cè)藬?shù)100,再求出32人;(3)用部分估計(jì)整體.試題解析:(1)126°(2)40÷40%-2-16-18-32=32人(3)1200×=768人考點(diǎn):統(tǒng)計(jì)圖20、(1)AE=DF,AE⊥DF,理由見(jiàn)解析;(2)成立,CE:CD=或2;(3)【解析】試題分析:(1)根據(jù)正方形的性質(zhì),由SAS先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有兩種情況:①當(dāng)AC=CE時(shí),設(shè)正方形ABCD的邊長(zhǎng)為a,由勾股定理求出AC=CE=a即可;②當(dāng)AE=AC時(shí),設(shè)正方形的邊長(zhǎng)為a,由勾股定理求出AC=AE=a,根據(jù)正方形的性質(zhì)知∠ADC=90°,然后根據(jù)等腰三角形的性質(zhì)得出DE=CD=a即可;(3)由(1)(2)知:點(diǎn)P的路徑是一段以AD為直徑的圓,設(shè)AD的中點(diǎn)為Q,連接QC交弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最大,再由勾股定理可得QC的長(zhǎng),再求CP即可.試題解析:(1)AE=DF,AE⊥DF,理由是:∵四邊形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵動(dòng)點(diǎn)E,F(xiàn)分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng),∴DE=CF,在△ADE和△DCF中,∴,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的結(jié)論還成立,有兩種情況:①如圖1,當(dāng)AC=CE時(shí),設(shè)正方形ABCD的邊長(zhǎng)為a,由勾股定理得,,則;②如圖2,當(dāng)AE=AC時(shí),設(shè)正方形ABCD的邊長(zhǎng)為a,由勾股定理得:,∵四邊形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵點(diǎn)P在運(yùn)動(dòng)中保持∠APD=90°,∴點(diǎn)P的路徑是以AD為直徑的圓,如圖3,設(shè)AD的中點(diǎn)為Q,連接CQ并延長(zhǎng)交圓弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最大,∵在Rt△QDC中,∴,即線段CP的最大值是.點(diǎn)睛:此題主要考查了正方形的性質(zhì),勾股定理,圓周角定理,全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì),三角形的內(nèi)角和定理,能綜合運(yùn)用性質(zhì)進(jìn)行推擠是解此題的關(guān)鍵,用了分類(lèi)討論思想,難度偏大.21、(1)如圖所示見(jiàn)解析;(2)四邊形OCED是菱形.理由見(jiàn)解析.【解析】
(1)根據(jù)圖形平移的性質(zhì)畫(huà)出平移后的△DEC即可;
(2)根據(jù)圖形平移的性質(zhì)得出AC∥DE,OA=DE,故四邊形OCED是平行四邊形,再由矩形的性質(zhì)可知OA=OB,故DE=CE,由此可得出結(jié)論.【詳解】(1)如圖所示;(2)四邊形OCED是菱形.理由:∵△DEC由△AOB平移而成,∴AC∥DE,BD∥CE,OA=DE,OB=CE,∴四邊形OCED是平行四邊形.∵四邊形ABCD是矩形,∴OA=OB,∴DE=CE,∴四邊形OCED是菱形.【點(diǎn)睛】本題考查了作圖與矩形的性質(zhì),解題的關(guān)鍵是熟練的掌握矩形的性質(zhì)與根據(jù)題意作圖.22、(1)作圖見(jiàn)解析,,;(2)①k=6;②.【解析】
(1)根據(jù)題意,畫(huà)出對(duì)應(yīng)的圖形,根據(jù)旋轉(zhuǎn)的性質(zhì)可得,,從而求出點(diǎn)E、F的坐標(biāo);(2)過(guò)點(diǎn)作軸于,過(guò)點(diǎn)作軸于,過(guò)點(diǎn)作于,根據(jù)相似三角形的判定證出,列出比例式,設(shè),根據(jù)反比例函數(shù)解析式可得(Ⅰ);①根據(jù)等角對(duì)等邊可得,可列方程(Ⅱ),然后聯(lián)立方程即可求出點(diǎn)D的坐標(biāo),從而求出k的值;②用m、n表
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024中外專(zhuān)有技術(shù)許可合同
- 2(2024版)城市軌道交通運(yùn)營(yíng)服務(wù)合同
- 2024蘋(píng)果購(gòu)買(mǎi)合同的樣本
- 2024年實(shí)習(xí)生權(quán)益保障協(xié)議
- 2024代理協(xié)議合同范本代理協(xié)議合同范本
- 2024裝修分包合同書(shū)范文
- 2024年農(nóng)產(chǎn)品電子商務(wù)平臺(tái)運(yùn)營(yíng)合同
- 2024年大型水電項(xiàng)目施工建設(shè)合同
- 2024年國(guó)際化工產(chǎn)品銷(xiāo)售合同
- 2024常州市物業(yè)管理委托合同范本
- GA/T 145-2019手印鑒定文書(shū)規(guī)范
- 小學(xué)一年級(jí)家長(zhǎng)會(huì)PPT1
- 貝加爾湖畔劉思遠(yuǎn) 簡(jiǎn)譜領(lǐng)唱與混聲四部合唱【原調(diào)-F】
- 企業(yè)員工職業(yè)道德培訓(xùn)(實(shí)用)課件
- 公文格式(全區(qū))課件
- 輸血查對(duì)制度-課件
- 初中青春期健康教育課件
- 六年級(jí)語(yǔ)文課外閱讀含答案
- 校長(zhǎng)在初三年級(jí)家長(zhǎng)會(huì)講話課件
- 解決方案銷(xiāo)售課件
- 各類(lèi)水質(zhì)標(biāo)準(zhǔn)對(duì)照一覽表
評(píng)論
0/150
提交評(píng)論