浙江省諸暨市浬浦鎮(zhèn)中學(xué)2023-2024學(xué)年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第1頁
浙江省諸暨市浬浦鎮(zhèn)中學(xué)2023-2024學(xué)年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第2頁
浙江省諸暨市浬浦鎮(zhèn)中學(xué)2023-2024學(xué)年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第3頁
浙江省諸暨市浬浦鎮(zhèn)中學(xué)2023-2024學(xué)年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第4頁
浙江省諸暨市浬浦鎮(zhèn)中學(xué)2023-2024學(xué)年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省諸暨市浬浦鎮(zhèn)中學(xué)2023-2024學(xué)年中考數(shù)學(xué)最后沖刺濃縮精華卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.為確保信息安全,信息需加密傳輸,發(fā)送方將明文加密后傳輸給接收方,接收方收到密文后解密還原為明文,已知某種加密規(guī)則為,明文a,b對應(yīng)的密文為a+2b,2a-b,例如:明文1,2對應(yīng)的密文是5,0,當(dāng)接收方收到的密文是1,7時,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,32.近兩年,中國倡導(dǎo)的“一帶一路”為沿線國家創(chuàng)造了約180000個就業(yè)崗位,將180000用科學(xué)記數(shù)法表示為()A.1.8×105 B.1.8×104 C.0.18×106 D.18×1043.如圖,圓O是等邊三角形內(nèi)切圓,則∠BOC的度數(shù)是()A.60° B.100° C.110° D.120°4.去年二月份,某房地產(chǎn)商將房價提高40%,在中央“房子是用來住的,不是用來炒的”指示下達(dá)后,立即降價30%.設(shè)降價后房價為x,則去年二月份之前房價為()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC. D.5.如圖,直線y=34x+3交x軸于A點,將一塊等腰直角三角形紙板的直角頂點置于原點O,另兩個頂點M、N恰落在直線y=3A.17 B.16 C.16.如果將拋物線向下平移1個單位,那么所得新拋物線的表達(dá)式是A. B. C. D.7.據(jù)報道,目前我國“天河二號”超級計算機的運算速度位居全球第一,其運算速度達(dá)到了每秒338600000億次,數(shù)字338600000用科學(xué)記數(shù)法可簡潔表示為()A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×1098.2017上半年,四川貨物貿(mào)易進出口總值為2098.7億元,較去年同期增長59.5%,遠(yuǎn)高于同期全國19.6%的整體進出口增幅.在“一帶一路”倡議下,四川同期對以色列、埃及、羅馬尼亞、伊拉克進出口均實現(xiàn)數(shù)倍增長.將2098.7億元用科學(xué)記數(shù)法表示是()A.2.0987×103 B.2.0987×1010 C.2.0987×1011 D.2.0987×10129.在平面直角坐標(biāo)系中,點(2,3)所在的象限是(

)A.第一象限

B.第二象限

C.第三象限

D.第四象限10.小紅上學(xué)要經(jīng)過三個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望小學(xué)時經(jīng)過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如果a2﹣a﹣1=0,那么代數(shù)式(a﹣)的值是.12.已知a2+1=3a,則代數(shù)式a+的值為.13.下面是用棋子擺成的“上”字:如果按照以上規(guī)律繼續(xù)擺下去,那么通過觀察,可以發(fā)現(xiàn):第n個“上”字需用_____枚棋子.14.出售某種手工藝品,若每個獲利x元,一天可售出個,則當(dāng)x=_________元,一天出售該種手工藝品的總利潤y最大.15.若一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是.16.在平面直角坐標(biāo)系xOy中,將拋物線y=3(x+2)2-1平移后得到拋物線y=3x2+2.請你寫出一種平移方法.答:________.三、解答題(共8題,共72分)17.(8分)閱讀(1)閱讀理解:如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)ⅰ鰽CD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是________;(2)問題解決:如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;(3)問題拓展:如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C為頂點作一個70°角,角的兩邊分別交AB,AD于E,F(xiàn)兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.18.(8分)解方程:-=119.(8分)觀察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把△ABD繞點A逆時針旋轉(zhuǎn)90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數(shù)量關(guān)系是,位置關(guān)系是.探究證明:在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結(jié)論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.拓展延伸:如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點D作DF⊥AD交CE于點F,請直接寫出線段CF長度的最大值.20.(8分)在等邊△ABC外側(cè)作直線AM,點C關(guān)于AM的對稱點為D,連接BD交AM于點E,連接CE,CD,AD.(1)依題意補全圖1,并求∠BEC的度數(shù);(2)如圖2,當(dāng)∠MAC=30°時,判斷線段BE與DE之間的數(shù)量關(guān)系,并加以證明;(3)若0°<∠MAC<120°,當(dāng)線段DE=2BE時,直接寫出∠MAC的度數(shù).21.(8分)如圖,在菱形ABCD中,點P在對角線AC上,且PA=PD,⊙O是△PAD的外接圓.(1)求證:AB是⊙O的切線;(2)若AC=8,tan∠BAC=,求⊙O的半徑.22.(10分)解不等式組:,并把解集在數(shù)軸上表示出來。23.(12分)如圖,在四邊形ABCD中,∠A=∠BCD=90°,,CE⊥AD于點E.(1)求證:AE=CE;(2)若tanD=3,求AB的長.24.為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當(dāng)售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關(guān)系式;當(dāng)每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?為穩(wěn)定物價,有關(guān)管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)題意可得方程組,再解方程組即可.【詳解】由題意得:,解得:,故選A.2、A【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】180000=1.8×105,故選A.【點睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.3、D【解析】

由三角形內(nèi)切定義可知OB、OC是∠ABC、∠ACB的角平分線,所以可得到關(guān)系式∠OBC+∠OCB=(∠ABC+∠ACB),把對應(yīng)數(shù)值代入即可求得∠BOC的值.【詳解】解:∵△ABC是等邊三角形,∴∠A=∠ABC=∠ACB=60°,∵圓O是等邊三角形內(nèi)切圓,∴OB、OC是∠ABC、∠ACB的角平分線,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故選D.【點睛】此題主要考查了三角形的內(nèi)切圓與內(nèi)心以及切線的性質(zhì).關(guān)鍵是要知道關(guān)系式∠OBC+∠OCB=(∠ABC+∠ACB).4、D【解析】

根據(jù)題意可以用相應(yīng)的代數(shù)式表示出去年二月份之前房價,本題得以解決.【詳解】由題意可得,去年二月份之前房價為:x÷(1﹣30%)÷(1+40%)=,故選:D.【點睛】本題考查了列代數(shù)式,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的代數(shù)式.5、A【解析】

過O作OC⊥AB于C,過N作ND⊥OA于D,設(shè)N的坐標(biāo)是(x,34x+3),得出DN=34x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面積公式得出AO×OB=AB×OC,代入求出OC,根據(jù)sin45°=OCON,求出ON,在Rt△NDO中,由勾股定理得出(34x+3)2+(-x)2=(122【詳解】過O作OC⊥AB于C,過N作ND⊥OA于D,∵N在直線y=34∴設(shè)N的坐標(biāo)是(x,34則DN=34y=34當(dāng)x=0時,y=3,當(dāng)y=0時,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面積公式得:AO×OB=AB×OC,∴3×4=5OC,OC=125∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=OCON∴ON=122在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(34x+3)2+(-x)2=(1225解得:x1=-8425,x2=12∵N在第二象限,∴x只能是-842534x+3=12即ND=1225,OD=84tan∠AON=NDOD故選A.【點睛】本題考查了一次函數(shù)圖象上點的坐標(biāo)特征,勾股定理,三角形的面積,解直角三角形等知識點的運用,主要考查學(xué)生運用這些性質(zhì)進行計算的能力,題目比較典型,綜合性比較強.6、C【解析】

根據(jù)向下平移,縱坐標(biāo)相減,即可得到答案.【詳解】∵拋物線y=x2+2向下平移1個單位,∴拋物線的解析式為y=x2+2-1,即y=x2+1.故選C.7、A【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】解:數(shù)字338600000用科學(xué)記數(shù)法可簡潔表示為3.386×108故選:A【點睛】本題考查科學(xué)記數(shù)法—表示較大的數(shù).8、C【解析】將2098.7億元用科學(xué)記數(shù)法表示是2.0987×1011,故選:C.點睛:本題考查了正整數(shù)指數(shù)科學(xué)計數(shù)法,對于一個絕對值較大的數(shù),用科學(xué)記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).9、A【解析】

根據(jù)點所在象限的點的橫縱坐標(biāo)的符號特點,就可得出已知點所在的象限.【詳解】解:點(2,3)所在的象限是第一象限.故答案為:A【點睛】考核知識點:點的坐標(biāo)與象限的關(guān)系.10、B【解析】分析:列舉出所有情況,看各路口都是綠燈的情況占總情況的多少即可.詳解:畫樹狀圖,得∴共有8種情況,經(jīng)過每個路口都是綠燈的有一種,∴實際這樣的機會是.故選B.點睛:此題考查了樹狀圖法求概率,樹狀圖法適用于三步或三步以上完成的事件,解題時要注意列出所有的情形.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】分析:先由a2﹣a﹣1=0可得a2﹣a=1,再把(a﹣)的第一個括號內(nèi)通分,并把分子分解因式后約分化簡,然后把a2﹣a=1代入即可.詳解:∵a2﹣a﹣1=0,即a2﹣a=1,∴原式===a(a﹣1)=a2﹣a=1,故答案為1點睛:本題考查了分式的化簡求值,解題的關(guān)鍵是正確掌握分式混合運算的順序:先算乘除,后算加減,有括號的先算括號里,整體代入法是求代數(shù)式的值常用的一種方法.12、1【解析】

根據(jù)題意a2+1=1a,整體代入所求的式子即可求解.【詳解】∵a2+1=1a,∴a+=+===1.故答案為1.13、4n+2【解析】∵第1個有:6=4×1+2;第2個有:10=4×2+2;第3個有:14=4×3+2;……∴第1個有:4n+2;故答案為4n+214、1【解析】先根據(jù)題意得出總利潤y與x的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的最值問題進行解答.解:∵出售某種手工藝品,若每個獲利x元,一天可售出(8-x)個,

∴y=(8-x)x,即y=-x2+8x,

∴當(dāng)x=-=1時,y取得最大值.

故答案為:1.15、:k<1.【解析】

∵一元二次方程有兩個不相等的實數(shù)根,∴△==4﹣4k>0,解得:k<1,則k的取值范圍是:k<1.故答案為k<1.16、答案不唯一【解析】分析:把y改寫成頂點式,進而解答即可.詳解:y先向右平移2個單位長度,再向上平移3個單位得到拋物線.故答案為y先向右平移2個單位長度,再向上平移3個單位得到拋物線.點睛:本題考查了二次函數(shù)圖象與幾何變換:先把二次函數(shù)的解析式配成頂點式為y=a(x-)2+,然后把拋物線的平移問題轉(zhuǎn)化為頂點的平移問題.三、解答題(共8題,共72分)17、(1)2<AD<8;(2)證明見解析;(3)BE+DF=EF;理由見解析.【解析】試題分析:(1)延長AD至E,使DE=AD,由SAS證明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三邊關(guān)系求出AE的取值范圍,即可得出AD的取值范圍;(2)延長FD至點M,使DM=DF,連接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由線段垂直平分線的性質(zhì)得出EM=EF,在△BME中,由三角形的三邊關(guān)系得出BE+BM>EM即可得出結(jié)論;(3)延長AB至點N,使BN=DF,連接CN,證出∠NBC=∠D,由SAS證明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,證出∠ECN=70°=∠ECF,再由SAS證明△NCE≌△FCE,得出EN=EF,即可得出結(jié)論.試題解析:(1)解:延長AD至E,使DE=AD,連接BE,如圖①所示:∵AD是BC邊上的中線,∴BD=CD,在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三邊關(guān)系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案為2<AD<8;(2)證明:延長FD至點M,使DM=DF,連接BM、EM,如圖②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三邊關(guān)系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延長AB至點N,使BN=DF,連接CN,如圖3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,BN=DF,∠NBC=∠D,BC=DC,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,CN=CF,∠ECN=∠ECF,CE=CE,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.考點:全等三角形的判定和性質(zhì);三角形的三邊關(guān)系定理.18、【解析】【分析】先去分母,把分式方程化為一元一次方程,解一元一次方程,再驗根.【詳解】解:去分母得:解得:檢驗:把代入所以:方程的解為【點睛】本題考核知識點:解方式方程.解題關(guān)鍵點:去分母,得到一元一次方程,.驗根是要點.19、(1)CE=BD,CE⊥BD.(2)(1)中的結(jié)論仍然成立.理由見解析;(3).【解析】分析:(1)線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)證明的方法與(1)類似.(3)過A作AM⊥BC于M,EN⊥AM于N,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,則NE=MA,由于∠ACB=45°,則AM=MC,所以MC=NE,易得四邊形MCEN為矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得,設(shè)DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函數(shù)即可求得CF的最大值.詳解:(1)①∵AB=AC,∠BAC=90°,∴線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案為CE=BD,CE⊥BD.(2)(1)中的結(jié)論仍然成立.理由如下:如圖,∵線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,即CE⊥BD,∴線段CE,BD之間的位置關(guān)系和數(shù)量關(guān)系分別為:CE=BD,CE⊥BD.(3)如圖3,過A作AM⊥BC于M,EN⊥AM于N,∵線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC為等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四邊形MCEN為平行四邊形,∵∠AMC=90°,∴四邊形MCEN為矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴,設(shè)DC=x,∵∠ACB=45°,AC=,∴AM=CM=1,MD=1-x,∴,∴CF=-x2+x=-(x-)2+,∴當(dāng)x=時有最大值,CF最大值為.點睛:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個圖形全等,對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等.也考查了等腰直角三角形的性質(zhì)和三角形全等及相似的判定與性質(zhì).20、(1)補全圖形如圖1所示,見解析,∠BEC=60°;(2)BE=2DE,見解析;(3)∠MAC=90°.【解析】

(1)根據(jù)軸對稱作出圖形,先判斷出∠ABD=∠ADB=y(tǒng),再利用三角形的內(nèi)角和得出x+y即可得出結(jié)論;(2)同(1)的方法判斷出四邊形ABCD是菱形,進而得出∠CBD=30°,進而得出∠BCD=90°,即可得出結(jié)論;(3)先作出EF=2BE,進而判斷出EF=CE,再判斷出∠CBE=90°,進而得出∠BCE=30°,得出∠AEC=60°,即可得出結(jié)論.【詳解】(1)補全圖形如圖1所示,根據(jù)軸對稱得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等邊三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y(tǒng).在△ABD中,2x+2y+60°=180°,∴x+y=60°.∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,證明:∵△ABC是等邊三角形,∴AB=BC=AC,由對稱知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等邊三角形,∴CD=AD,∴AB=BC=CD=AD,∴四邊形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如圖3,(本身點C,A,D在同一條直線上,為了說明∠CBD=90°,畫圖時,沒畫在一條直線上)延長EB至F使BE=BF,∴EF=2BE,由軸對稱得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,連接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等邊三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.【點睛】此題是三角形綜合題,主要考查了等邊三角形的判定和性質(zhì),軸對稱的性質(zhì),等腰三角形的性質(zhì),三角形的內(nèi)角和定理,作出圖形是解本題的關(guān)鍵.21、(1)見解析;(2).【解析】分析:(1)連結(jié)OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根據(jù)垂徑定理的推理得OP⊥AD,AE=DE,則∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根據(jù)菱形的性質(zhì)得∠1=∠2,所以∠2+∠OAP=90°,然后根據(jù)切線的判定定理得到直線AB與⊙O相切;(2)連結(jié)BD,交AC于點F,根據(jù)菱形的性質(zhì)得DB與AC互相垂直平分,則AF=4,tan∠DAC=,得到DF=2,根據(jù)勾股定理得到AD==2,求得AE=,設(shè)⊙O的半徑為R,則OE=R﹣,OA=R,根據(jù)勾股定理列方程即可得到結(jié)論.詳解:(1)連結(jié)OP、OA,OP交AD于E,如圖,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.∵四邊形ABCD為菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直線AB與⊙O相切;(2)連結(jié)BD,交AC于點F,如圖,∵四邊形ABCD為菱形,∴DB與AC互相垂直平分.∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=.在Rt△PAE中,tan∠1==,∴PE=.設(shè)⊙O的半徑為R,則OE=R﹣,OA=R.在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半徑為.點睛:本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了菱形的性質(zhì)和銳角三角函數(shù)以及勾股定理.22、,解集在數(shù)軸上表示見解析【解析】試題分析:先解不等式組中的每一個不等式,得到不等式組的解集,再把不等式的解集表示在數(shù)軸上即可.試題解析:由①得:由②得:∴不等式組的解集為:解集在數(shù)軸上表示為:23、(1)見解析;(2)AB=4【解析】

(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論