版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
貴州省黔西南州2024屆中考數(shù)學(xué)對點(diǎn)突破模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.三個(gè)等邊三角形的擺放位置如圖,若∠3=60°,則∠1+∠2的度數(shù)為()A.90° B.120° C.270° D.360°2.體育測試中,小進(jìn)和小俊進(jìn)行800米跑測試,小進(jìn)的速度是小俊的1.25倍,小進(jìn)比小俊少用了40秒,設(shè)小俊的速度是米/秒,則所列方程正確的是()A. B.C. D.3.如圖是一個(gè)由5個(gè)相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.4.如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連接AO并延長交⊙O于點(diǎn)E,連接EC,若AB=8,CD=2,則cos∠ECB為()A. B. C. D.5.設(shè)α,β是一元二次方程x2+2x-1=0的兩個(gè)根,則αβ的值是()A.2B.1C.-2D.-16.關(guān)于的方程有實(shí)數(shù)根,則滿足()A. B.且 C.且 D.7.如圖,正方形ABCD和正方形CEFG中,點(diǎn)D在CG上,BC=1,CE=3,CH┴AF與點(diǎn)H,那么CH的長是()A. B. C. D.8.如圖,點(diǎn)M為?ABCD的邊AB上一動(dòng)點(diǎn),過點(diǎn)M作直線l垂直于AB,且直線l與?ABCD的另一邊交于點(diǎn)N.當(dāng)點(diǎn)M從A→B勻速運(yùn)動(dòng)時(shí),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t,△AMN的面積為S,能大致反映S與t函數(shù)關(guān)系的圖象是()A. B. C. D.9.如圖給定的是紙盒的外表面,下面能由它折疊而成的是()A. B. C. D.10.點(diǎn)A(a,3)與點(diǎn)B(4,b)關(guān)于y軸對稱,則(a+b)2017的值為()A.0 B.﹣1 C.1 D.72017二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,在一次數(shù)學(xué)活動(dòng)課上,小明用18個(gè)棱長為1的正方體積木搭成一個(gè)幾何體,然后他請小亮用其他棱長為1的正方體積木在旁邊再搭一個(gè)幾何體,使小亮所搭幾何體恰好和小明所搭幾何體拼成一個(gè)無空隙的大長方體(不改變小明所搭幾何體的形狀).請從下面的A、B兩題中任選一題作答,我選擇__________.A、按照小明的要求搭幾何體,小亮至少需要__________個(gè)正方體積木.B、按照小明的要求,小亮所搭幾何體的表面積最小為__________.12.我國古代有這樣一道數(shù)學(xué)問題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達(dá)其頂,問葛藤之長幾何?”題意是:如圖所示,把枯木看作一個(gè)圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長為3尺,有葛藤自點(diǎn)A處纏繞而上,繞五周后其末端恰好到達(dá)點(diǎn)B處,則問題中葛藤的最短長度是尺.
13.如果點(diǎn)A(-1,4)、B(m,4)在拋物線y=a(x-1)2+h上,那么m的值為_____.14.因式分解:a2b-4ab+4b=______.15.如圖,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以點(diǎn)A為圓心,AC為半徑的弧交AB于點(diǎn)E,以點(diǎn)B為圓心,BC為半徑的弧交AB于點(diǎn)D,則圖中陰影部分圖形的面積為__(保留根號(hào)和π)16.如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)點(diǎn)F處,連接CF,則CF的長度為_____三、解答題(共8題,共72分)17.(8分)為落實(shí)“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.直接寫出甲投放的垃圾恰好是A類的概率;求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.18.(8分)在中,,是邊的中線,于,連結(jié),點(diǎn)在射線上(與,不重合)(1)如果①如圖1,②如圖2,點(diǎn)在線段上,連結(jié),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到線段,連結(jié),補(bǔ)全圖2猜想、之間的數(shù)量關(guān)系,并證明你的結(jié)論;(2)如圖3,若點(diǎn)在線段的延長線上,且,連結(jié),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,連結(jié),請直接寫出、、三者的數(shù)量關(guān)系(不需證明)19.(8分)隨著信息技術(shù)的快速發(fā)展,“互聯(lián)網(wǎng)+”滲透到我們?nèi)粘I畹母鱾€(gè)領(lǐng)域,網(wǎng)上在線學(xué)習(xí)交流已不再是夢,現(xiàn)有某教學(xué)網(wǎng)站策劃了A,B兩種上網(wǎng)學(xué)習(xí)的月收費(fèi)方式:收費(fèi)方式月使用費(fèi)/元包時(shí)上網(wǎng)時(shí)間/h超時(shí)費(fèi)/(元/min)A7250.01Bmn0.01設(shè)每月上網(wǎng)學(xué)習(xí)時(shí)間為x小時(shí),方案A,B的收費(fèi)金額分別為yA,yB.(1)如圖是yB與x之間函數(shù)關(guān)系的圖象,請根據(jù)圖象填空:m=;n=;(2)寫出yA與x之間的函數(shù)關(guān)系式;(3)選擇哪種方式上網(wǎng)學(xué)習(xí)合算,為什么.20.(8分)如圖,在△ABC中,∠ACB=90°,AC=1.sin∠A=,點(diǎn)D是BC的中點(diǎn),點(diǎn)P是AB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),延長PD至E,使DE=PD,連接EB、EC.(1)求證;四邊形PBEC是平行四邊形;(2)填空:①當(dāng)AP的值為時(shí),四邊形PBEC是矩形;②當(dāng)AP的值為時(shí),四邊形PBEC是菱形.21.(8分)如圖,BD是矩形ABCD的一條對角線.(1)作BD的垂直平分線EF,分別交AD、BC于點(diǎn)E、F,垂足為點(diǎn)O.(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);(2)求證:DE=BF.22.(10分)在?ABCD中,過點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,DF=BE,連接AF,BF.(1)求證:四邊形DEBF是矩形;(2)若AF平分∠DAB,AE=3,BF=4,求?ABCD的面積.23.(12分)已知一個(gè)矩形紙片OACB,將該紙片放置在平面直角坐標(biāo)系中,點(diǎn)A(11,0),點(diǎn)B(0,6),點(diǎn)P為BC邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),經(jīng)過點(diǎn)O、P折疊該紙片,得點(diǎn)B′和折痕OP.設(shè)BP=t.(Ⅰ)如圖①,當(dāng)∠BOP=300時(shí),求點(diǎn)P的坐標(biāo);(Ⅱ)如圖②,經(jīng)過點(diǎn)P再次折疊紙片,使點(diǎn)C落在直線PB′上,得點(diǎn)C′和折痕PQ,若AQ=m,試用含有t的式子表示m;(Ⅲ)在(Ⅱ)的條件下,當(dāng)點(diǎn)C′恰好落在邊OA上時(shí),求點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可).24.如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),在BC邊上以每秒cm的速度向點(diǎn)B勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q也從點(diǎn)C出發(fā),沿C→A→B以每秒4cm的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,連接PQ,以PQ為直徑作⊙O.(1)當(dāng)時(shí),求△PCQ的面積;(2)設(shè)⊙O的面積為s,求s與t的函數(shù)關(guān)系式;(3)當(dāng)點(diǎn)Q在AB上運(yùn)動(dòng)時(shí),⊙O與Rt△ABC的一邊相切,求t的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
先根據(jù)圖中是三個(gè)等邊三角形可知三角形各內(nèi)角等于60°,用∠1,∠2,∠3表示出△ABC各角的度數(shù),再根據(jù)三角形內(nèi)角和定理即可得出結(jié)論.【詳解】∵圖中是三個(gè)等邊三角形,∠3=60°,
∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,
∠BAC=180°-60°-∠1=120°-∠1,
∵∠ABC+∠ACB+∠BAC=180°,
∴60°+(120°-∠2)+(120°-∠1)=180°,
∴∠1+∠2=120°.
故選B.【點(diǎn)睛】考查的是等邊三角形的性質(zhì),熟知等邊三角形各內(nèi)角均等于60°是解答此題的關(guān)鍵.2、C【解析】
先分別表示出小進(jìn)和小俊跑800米的時(shí)間,再根據(jù)小進(jìn)比小俊少用了40秒列出方程即可.【詳解】小進(jìn)跑800米用的時(shí)間為秒,小俊跑800米用的時(shí)間為秒,∵小進(jìn)比小俊少用了40秒,方程是,故選C.【點(diǎn)睛】本題考查了列分式方程解應(yīng)用題,能找出題目中的相等關(guān)系式是解此題的關(guān)鍵.3、A【解析】
根據(jù)從正面看得到的圖形是主視圖,可得答案.【詳解】解:從正面看第一層是三個(gè)小正方形,第二層中間有一個(gè)小正方形,
故選:A.【點(diǎn)睛】本題考查了簡單組合體的三視圖,從正面看得到的圖形是主視圖.4、D【解析】
連接EB,設(shè)圓O半徑為r,根據(jù)勾股定理可求出半徑r=4,從而可求出EB的長度,最后勾股定理即可求出CE的長度.利用銳角三角函數(shù)的定義即可求出答案.【詳解】解:連接EB,由圓周角定理可知:∠B=90°,設(shè)⊙O的半徑為r,由垂徑定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:CE=2,∴cos∠ECB==,故選D.【點(diǎn)睛】本題考查垂徑定理,涉及勾股定理,垂直定理,解方程等知識(shí),綜合程度較高,屬于中等題型.5、D【解析】試題分析:∵α、β是一元二次方程x2+2x-1=0的兩個(gè)根,∴αβ=考點(diǎn):根與系數(shù)的關(guān)系.6、A【解析】
分類討論:當(dāng)a=5時(shí),原方程變形一元一次方程,有一個(gè)實(shí)數(shù)解;當(dāng)a≠5時(shí),根據(jù)判別式的意義得到a≥1且a≠5時(shí),方程有兩個(gè)實(shí)數(shù)根,然后綜合兩種情況即可得到滿足條件的a的范圍.【詳解】當(dāng)a=5時(shí),原方程變形為-4x-1=0,解得x=-;當(dāng)a≠5時(shí),△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5時(shí),方程有兩個(gè)實(shí)數(shù)根,所以a的取值范圍為a≥1.故選A.【點(diǎn)睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.也考查了一元二次方程的定義.7、D【解析】
連接AC、CF,根據(jù)正方形性質(zhì)求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長.【詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【點(diǎn)睛】本題考查了正方形的性質(zhì)、勾股定理及直角三角形的面積,熟記各性質(zhì)并作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.8、C【解析】分析:本題需要分兩種情況來進(jìn)行計(jì)算得出函數(shù)解析式,即當(dāng)點(diǎn)N和點(diǎn)D重合之前以及點(diǎn)M和點(diǎn)B重合之前,根據(jù)題意得出函數(shù)解析式.詳解:假設(shè)當(dāng)∠A=45°時(shí),AD=2,AB=4,則MN=t,當(dāng)0≤t≤2時(shí),AM=MN=t,則S=,為二次函數(shù);當(dāng)2≤t≤4時(shí),S=t,為一次函數(shù),故選C.點(diǎn)睛:本題主要考查的就是函數(shù)圖像的實(shí)際應(yīng)用問題,屬于中等難度題型.解答這個(gè)問題的關(guān)鍵就是得出函數(shù)關(guān)系式.9、B【解析】
將A、B、C、D分別展開,能和原圖相對應(yīng)的即為正確答案:【詳解】A、展開得到,不能和原圖相對應(yīng),故本選項(xiàng)錯(cuò)誤;B、展開得到,能和原圖相對,故本選項(xiàng)正確;C、展開得到,不能和原圖相對應(yīng),故本選項(xiàng)錯(cuò)誤;D、展開得到,不能和原圖相對應(yīng),故本選項(xiàng)錯(cuò)誤.故選B.10、B【解析】
根據(jù)關(guān)于y軸對稱的點(diǎn)的縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),可得答案.【詳解】解:由題意,得a=-4,b=1.(a+b)2017=(-1)2017=-1,故選B.【點(diǎn)睛】本題考查了關(guān)于y軸對稱的點(diǎn)的坐標(biāo),利用關(guān)于y軸對稱的點(diǎn)的縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)得出a,b是解題關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、A,18,1【解析】
A、首先確定小明所搭幾何體所需的正方體的個(gè)數(shù),然后確定兩人共搭建幾何體所需小立方體的數(shù)量,求差即可;
B、分別得到前后面,上下面,左右面的面積,相加即可求解.【詳解】A、∵小亮所搭幾何體恰好可以和小明所搭幾何體拼成一個(gè)無縫隙的大長方體,
∴該長方體需要小立方體4×32=36個(gè),
∵小明用18個(gè)邊長為1的小正方體搭成了一個(gè)幾何體,
∴小亮至少還需36-18=18個(gè)小立方體,
B、表面積為:2×(8+8+7)=1.
故答案是:A,18,1.【點(diǎn)睛】考查了由三視圖判斷幾何體的知識(shí),能夠確定兩人所搭幾何體的形狀是解答本題的關(guān)鍵.12、1.【解析】試題分析:這種立體圖形求最短路徑問題,可以展開成為平面內(nèi)的問題解決,展開后可轉(zhuǎn)化下圖,所以是直角三角形求斜邊的問題,根據(jù)勾股定理可求出葛藤長為=1(尺).故答案為1.考點(diǎn):平面展開最短路徑問題13、1【解析】
根據(jù)函數(shù)值相等兩點(diǎn)關(guān)于對稱軸對稱,可得答案.【詳解】由點(diǎn)A(﹣1,4)、B(m,4)在拋物線y=a(x﹣1)2+h上,得:(﹣1,4)與(m,4)關(guān)于對稱軸x=1對稱,m﹣1=1﹣(﹣1),解得:m=1.故答案為:1.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,利用函數(shù)值相等兩點(diǎn)關(guān)于對稱軸對稱得出m﹣1=1﹣(﹣1)是解題的關(guān)鍵.14、【解析】
先提公因式b,然后再運(yùn)用完全平方公式進(jìn)行分解即可.【詳解】a2b﹣4ab+4b=b(a2﹣4a+4)=b(a﹣2)2,故答案為b(a﹣2)2.【點(diǎn)睛】本題考查了利用提公因式法與公式法分解因式,熟練掌握完全平方公式的結(jié)構(gòu)特征是解本題的關(guān)鍵.15、15π?18.【解析】
根據(jù)扇形的面積公式:S=分別計(jì)算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面積,最后由S陰影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.【詳解】S陰影部分=S扇形ACE+S扇形BCD-S△ABC,∵S扇形ACE==12π,S扇形BCD==3π,S△ABC=×6×6=18,∴S陰影部分=12π+3π?18=15π?18.故答案為15π?18.【點(diǎn)睛】本題考查了扇形面積的計(jì)算,解題的關(guān)鍵是熟練的掌握扇形的面積公式.16、【解析】
分析題意,如圖所示,連接BF,由翻折變換可知,BF⊥AE,BE=EF,由點(diǎn)E是BC的中點(diǎn)可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進(jìn)而可得到BF的長度;結(jié)合題意可知FE=BE=EC,進(jìn)而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點(diǎn)E為BC的中點(diǎn),∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為【點(diǎn)睛】此題考查矩形的性質(zhì)和折疊問題,解題關(guān)鍵在于利用好折疊的性質(zhì)三、解答題(共8題,共72分)17、(1)(2).【解析】
(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結(jié)果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結(jié)果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.18、(1)①60;②.理由見解析;(2),理由見解析.【解析】
(1)①根據(jù)直角三角形斜邊中線的性質(zhì),結(jié)合,只要證明是等邊三角形即可;②根據(jù)全等三角形的判定推出,根據(jù)全等的性質(zhì)得出,(2)如圖2,求出,,求出,,根據(jù)全等三角形的判定得出,求出,推出,解直角三角形求出即可.【詳解】解:(1)①∵,,∴,∵,∴,∴是等邊三角形,∴.故答案為60.②如圖1,結(jié)論:.理由如下:∵,是的中點(diǎn),,,∴,,∴,,,∴,∵,∴,∵線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,∴,在和中,∴,∴.(2)結(jié)論:.理由:∵,是的中點(diǎn),,,∴,,∴,,,∴,∵,∴,∵線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,∴,在和中,∴,∴,而,∴,在中,,∴,∴,∴,即.【點(diǎn)睛】本題考查了三角形外角性質(zhì),全等三角形的性質(zhì)和判定,直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì)的應(yīng)用,能推出是解此題的關(guān)鍵,綜合性比較強(qiáng),證明過程類似.19、(1)10,50;(2)見解析;(3)當(dāng)0<x<30時(shí),選擇A方式上網(wǎng)學(xué)習(xí)合算,當(dāng)x=30時(shí),選擇哪種方式上網(wǎng)學(xué)習(xí)都行,當(dāng)x>30時(shí),選擇B方式上網(wǎng)學(xué)習(xí)合算.【解析】
(1)由圖象知:m=10,n=50;(2)根據(jù)已知條件即可求得yA與x之間的函數(shù)關(guān)系式為:當(dāng)x≤25時(shí),yA=7;當(dāng)x>25時(shí),yA=7+(x﹣25)×0.01;(3)先求出yB與x之間函數(shù)關(guān)系為:當(dāng)x≤50時(shí),yB=10;當(dāng)x>50時(shí),yB=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪種方式上網(wǎng)學(xué)習(xí)合算即可.【詳解】解:(1)由圖象知:m=10,n=50;故答案為:10;50;(2)yA與x之間的函數(shù)關(guān)系式為:當(dāng)x≤25時(shí),yA=7,當(dāng)x>25時(shí),yA=7+(x﹣25)×60×0.01,∴yA=0.6x﹣8,∴yA=;(3)∵yB與x之間函數(shù)關(guān)系為:當(dāng)x≤50時(shí),yB=10,當(dāng)x>50時(shí),yB=10+(x﹣50)×60×0.01=0.6x﹣20,當(dāng)0<x≤25時(shí),yA=7,yB=50,∴yA<yB,∴選擇A方式上網(wǎng)學(xué)習(xí)合算,當(dāng)25<x≤50時(shí).yA=yB,即0.6x﹣8=10,解得;x=30,∴當(dāng)25<x<30時(shí),yA<yB,選擇A方式上網(wǎng)學(xué)習(xí)合算,當(dāng)x=30時(shí),yA=yB,選擇哪種方式上網(wǎng)學(xué)習(xí)都行,當(dāng)30<x≤50,yA>yB,選擇B方式上網(wǎng)學(xué)習(xí)合算,當(dāng)x>50時(shí),∵yA=0.6x﹣8,yB=0.6x﹣20,yA>yB,∴選擇B方式上網(wǎng)學(xué)習(xí)合算,綜上所述:當(dāng)0<x<30時(shí),yA<yB,選擇A方式上網(wǎng)學(xué)習(xí)合算,當(dāng)x=30時(shí),yA=yB,選擇哪種方式上網(wǎng)學(xué)習(xí)都行,當(dāng)x>30時(shí),yA>yB,選擇B方式上網(wǎng)學(xué)習(xí)合算.【點(diǎn)睛】本題考查一次函數(shù)的應(yīng)用.20、證明見解析;(2)①9;②12.5.【解析】
(1)根據(jù)對角線互相平分的四邊形為平行四邊形證明即可;(2)①若四邊形PBEC是矩形,則∠APC=90°,求得AP即可;②若四邊形PBEC是菱形,則CP=PB,求得AP即可.【詳解】∵點(diǎn)D是BC的中點(diǎn),∴BD=CD.∵DE=PD,∴四邊形PBEC是平行四邊形;(2)①當(dāng)∠APC=90°時(shí),四邊形PBEC是矩形.∵AC=1.sin∠A=,∴PC=12,由勾股定理得:AP=9,∴當(dāng)AP的值為9時(shí),四邊形PBEC是矩形;②在△ABC中,∵∠ACB=90°,AC=1.sin∠A=,所以設(shè)BC=4x,AB=5x,則(4x)2+12=(5x)2,解得:x=5,∴AB=5x=2.當(dāng)PC=PB時(shí),四邊形PBEC是菱形,此時(shí)點(diǎn)P為AB的中點(diǎn),所以AP=12.5,∴當(dāng)AP的值為12.5時(shí),四邊形PBEC是菱形.【點(diǎn)睛】本題考查了菱形的判定、平行四邊形的判定和性質(zhì)、矩形的判定,解題的關(guān)鍵是掌握特殊圖形的判定以及重要的性質(zhì).21、(1)作圖見解析;(2)證明見解析;【解析】
(1)分別以B、D為圓心,以大于BD的長為半徑四弧交于兩點(diǎn),過兩點(diǎn)作直線即可得到線段BD的垂直平分線;(2)利用垂直平分線證得△DEO≌△BFO即可證得結(jié)論.【詳解】解:(1)如圖:(2)∵四邊形ABCD為矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分線段BD,∴BO=DO,在△DEO和三角形BFO中,,∴△DEO≌△BFO(ASA),∴DE=BF.考點(diǎn):1.作圖—基本作圖;2.線段垂直平分線的性質(zhì);3.矩形的性質(zhì).22、(1)證明見解析(2)3【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì),可證DF∥EB,然后根據(jù)一組對邊平行且相等的四邊形為平行四邊形可證四邊形DEBF是平行四邊形,然后根據(jù)有一個(gè)角是直角的平行四邊形是矩形可證;(2)根據(jù)(1)可知DE=BF,然后根據(jù)勾股定理可求AD的長,然后根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)可求得DF=AD,然后可求CD的長,最后可用平行四邊形的面積公式可求解.試題解析:(1)∵四邊形ABCD是平行四邊形,∴DC∥AB,即DF∥EB.又∵DF=BE,∴四邊形DEBF是平行四邊形.∵DE⊥AB,∴∠EDB=90°.∴四邊形DEBF是矩形.(2)∵四邊形DEBF是矩形,∴DE=BF=4,BD=DF.∵DE⊥AB,∴AD===1.∵DC∥AB,∴∠DFA=∠FAB.∵AF平分∠DAB,∴∠DAF=∠FAB.∴∠DAF=∠DFA.∴DF=AD=1.∴BE=1.∴AB=AE+BE=3+1=2.∴S□ABCD=AB·BF=2×4=3.23、(Ⅰ)點(diǎn)P的坐標(biāo)為(,1).(Ⅱ)(0<t<11).(Ⅲ)點(diǎn)P的坐標(biāo)為(,1)或(,1).【解析】
(Ⅰ)根據(jù)題意得,∠OBP=90°,OB=1,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易證得△OBP∽△PCQ,然后由相似三角形的對應(yīng)邊成比例,即可求得答案.(Ⅲ)首先過點(diǎn)P作PE⊥OA于E,易證得△PC′E∽△C′QA,由勾股定理可求得C′Q的長,然后利用相似三角形的對應(yīng)邊成比例與,即可求得t的值:【詳解】(Ⅰ)根據(jù)題意,∠OBP=90°,OB=1.在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=-(舍去).∴點(diǎn)P的坐標(biāo)為(,1).(Ⅱ)∵△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,∴△OB′P≌△OBP,△QC′P≌△QCP.∴∠OPB′=∠OPB,∠QPC′=∠QPC.∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ.∴.由題意設(shè)BP=t,AQ=m,BC=11,AC=1,則PC=11-t,CQ=1-m.∴.∴(0<t<11).(Ⅲ)點(diǎn)P的坐標(biāo)為(,1)或(,1).過點(diǎn)P作PE⊥OA于E,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠EPC′=90°.∵∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年第八章合同擔(dān)保在電子商務(wù)交易保障中的應(yīng)用3篇
- 2024年電子商務(wù)市場調(diào)研與競爭分析服務(wù)合同2篇
- 2024年度國際貿(mào)易出口合同訂立流程與風(fēng)險(xiǎn)控制指南3篇
- 2024年度財(cái)務(wù)風(fēng)險(xiǎn)防范及內(nèi)部控制建設(shè)合同3篇
- 2024年度研發(fā)與外包合同3篇
- 2024版二手車回收與再制造合同樣本2篇
- 2024版出租車公司股權(quán)轉(zhuǎn)讓與乘客安全保障系統(tǒng)建設(shè)合同3篇
- 2024版農(nóng)業(yè)科技示范園堰塘承包與技術(shù)創(chuàng)新合同3篇
- 2024年度藝術(shù)品買賣及授權(quán)合同5篇
- 2024版懸疑科幻電影拍攝合同2篇
- 2024-淘寶商城入駐協(xié)議標(biāo)準(zhǔn)版
- 中國青少年籃球訓(xùn)練教學(xué)大綱-姚維
- 長方體的表面積說課市公開課一等獎(jiǎng)省賽課微課金獎(jiǎng)?wù)n件
- 中國石油天然氣集團(tuán)有限公司投標(biāo)人失信行為管理辦法(試行)
- 中醫(yī)藥與中華傳統(tǒng)文化智慧樹知到期末考試答案2024年
- 產(chǎn)品質(zhì)量保證函模板
- 模板支撐腳手架集中線荷載、施工總荷載計(jì)算表(修正)
- GB/T 43700-2024滑雪場所的運(yùn)行和管理規(guī)范
- 新媒體部門崗位配置人員架構(gòu)圖
- 水電站廠房設(shè)計(jì)-畢業(yè)設(shè)計(jì)
- 綜合金融服務(wù)方案課件
評論
0/150
提交評論