




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
BISBulletinNo84ArtificialintelligenceincentralbankingDouglasAraujo,SebastianDoerr,LeonardoGambacortaandBrunoTissot23January2024BISBulletinsarewrittenbystaffmembersoftheBankforInternationalSettlements,andfromtimetotimebyothereconomists,andarepublishedbytheBank.Thepapersareonsubjectsoftopicalinterestandaretechnicalincharacter.TheviewsexpressedinthemarethoseoftheirauthorsandnotnecessarilytheviewsoftheBIS.TheauthorsaregratefultoBryanHardyandGaloNu?oforcomments,IlariaMatteiandKrzysztofZdanowiczforexcellentresearchassistance,andtoLouisaWagnerforadministrativesupport.TheeditoroftheBISBulletinseriesisHyunSongShin.ThispublicationisavailableontheBISwebsite().?BankforInternationalSettlements2024.Allrightsreserved.Briefexcerptsmaybereproducedortranslatedprovidedthesourceisstated.ISSN:2708-0420(online)ISBN:978-92-9259-738-2(online)DouglasAraujoSebastianDoerrLeonardoGambacortaBrunoTissotDouglas.Araujo@Sebastian.Doerr@Leonardo.Gambacorta@Bruno.Tissot@ArtificialintelligenceincentralbankingKeytakeaways
Centralbankshavebeenearlyadoptersofmachinelearningtechniquesforstatistics,macroanalysis,paymentsystemsoversightandsupervision,withconsiderablesuccess.Artificialintelligencebringsmanyopportunitiesinsupportofcentralbankmandates,butalsochallenges–somegeneralandothersspecifictocentralbanks.Centralbankcollaboration,forinstancethroughknowledge-sharingandpoolingofexpertise,holdsgreatpromiseinkeepingcentralbanksatthevanguardofdevelopmentsinartificialintelligence.Longbeforeartificialintelligence(AI)becameafocalpointofpopularcommentaryandwidespreadfascination,centralbankswereearlyadoptersofmachinelearningmethodstoobtainvaluableinsightsforstatistics,researchandpolicy(Doerretal(2021),Araujoetal(2022,2023)).Thegreatercapabilitiesandperformanceofthenewgenerationofmachinelearningtechniquesopenupfurtheropportunities.Yetharnessingtheserequirescentralbankstobuildupthenecessaryinfrastructureandexpertise.Centralbanksalsoneedtoaddressconcernsaboutdataqualityandprivacyaswellasrisksemanatingfromdependenceonafewproviders.ThisBulletinfirstprovidesabriefsummaryofconceptsinthemachinelearningandAIspace.Itthendiscussescentralbankusecasesinfourareas:(i)informationcollectionandthecompilationofofficialstatistics;(ii)macroeconomicandfinancialanalysistosupportmonetarypolicy;(iii)oversightofpaymentsystems;and(iv)supervisionandfinancialstability.TheBulletinalsosummarisesthelessonslearnedandtheopportunitiesandchallengesarisingfromtheuseofmachinelearningandAI.Itconcludesbydiscussinghowcentralbankcooperationcanplayakeyrolegoingforward.OverviewofmachinelearningmethodsandAIBroadlyspeaking,machinelearningcomprisesthesetoftechniquesdesignedtoextractinformationfromdata,especiallywithaviewtomakingpredictions.Machinelearningcanbeseenasanoutgrowthoftraditionalstatisticalandeconometrictechniques,althoughitdoesnotrelyonapre-specifiedmodeloronstatisticalassumptionssuchaslinearityornormality.Theprocessoffittingamachinelearningmodeltodataiscalledtraining.Thecriterionforsuccessfultrainingistheabilitytopredictoutcomesonpreviouslyunseen(“out-of-sample”)data,irrespectiveofhowthemodelspredictthem.Thissectiondescribessomeofthemostcommontechniquesusedincentralbanks,basedontheregularstocktakingexercisesorganisedinthecentralbankingcommunityundertheumbrellaoftheBISIrvingFisherCommitteeonCentralBankStatistics(IFC).Tree-basedmethodsareflexiblemachinelearningalgorithmsthatcantackleawiderangeoftasks.Decisiontreesgroupindividualdatapointsbysequentiallypartitioningdataintofinercategoriesaccordingtospecificcharacteristicsofinterest.Forexample,atreemayfirstsorthouses(theinputdata)intothosewithmorethanthreeroomsandthosewithatmostthree,andthenpartitionhousesineachoftheseBISBulletin1subgroupsintothosebuiltbefore1990andthosebuiltafter,andsoon.Theresultingfinerpartitioningofhousescanthenbecomparedwithaparticulardimensionofinterest(theoutput)toseehowwellthepartitioningmatchesanattributeofinterest.Forinstance,capturinghowhousepricesvaryacrossthefinerpartitioningwouldbeawaytogroupsimilarhousesintermsoftheirprice.Randomforestscombineseveraltreestrainedondifferentslicesofthesamedatatoimprovepredictionoutofsamplewhileguardingagainsttheriskofoverfittingthetrainingdatasample.Randomforestsandrelatedmodelscanbeseenasamoreflexibleformofregressionanalysis,astheypredictoutputfromtheexplanatoryvariablesofinterest(AtheyandImbens(2021)).Inaddition,tree-basedmethodscanserveasanexploratorytooltogleanpatternsinthedatawithoutimposingamodelstructure.Forinstance,theycanclassifydatapointsintosimilarcategories.Inthesamespirit,forestscanbedeployedinidentifyingoutliersbymeansofisolationforests,amethodthatsinglesoutthedatapointsthatcanbeisolatedfromothers.Neuralnetworksareperhapsthemostimportanttechniqueinmachinelearning,withwidespreadusesevenforthelatestgenerationofmodels.Theirmainbuildingblocksareartificialneurons,whichtakemultipleinputvaluesandtransformtheminanon-linearwaytooutputasinglenumber–likelogisticregressions.Theartificialneuronsareorganisedtoformasequenceoflayersthatcanbestacked:theneuronsofthefirstlayertaketheinputdataandoutputanactivationvalue.Subsequentlayersthentaketheoutputofthepreviouslayerasinput,transformitandoutputanothervalue,andsoforth.Thisway,similartoneuronsinthehumanbrain,anartificialneuron’soutputvalueisakintoanelectricalimpulsetransmittedtootherneurons.Anetwork’sdepthreferstothenumberoflayers.Eachneuron’sconstantandweightsattachedtotheoutputofpreviouslayers’neuronsarecollectivelycalledparameters;theydeterminethestrengthofconnectionsacrossneuronsandlayers.Theseparametersareimprovediterativelyduringtraining.Deepernetworkswithmoreparametersrequiremoretrainingdatabutpredictmoreaccurately.NeuralnetworksarebehindfacerecognitionorvoiceassistantsinmobilephonesandunderliethemostsignificantrecentinnovationsinAI.Transformers,unveiledin2017,drasticallyimprovedtheperformanceofneuralnetworksinnaturallanguageprocessing(NLP)andenabledtheriseoflargelanguagemodels(LLMs).Ratherthanjustrelatingawordtothosenearit,transformersattempttocapturetherelationshipbetweenthedifferentcomponentsofatextsequence,eveniftheyarefarapartinthesentence.Thisallowsthemodeltobetterunderstandthecontextandhencedifferentmeaningsawordcanhave.Forexample,themeaningoftheword“bank”differswhenitappearsinthesentence“I’llswimacrosstherivertogettotheotherbank”versus“Icrossedthestreettogotothebank”.TransformersunlockedusecasesofNLPthatrequiredealingwithlongstreamsoftextandgaverisetothemostrecentadvancesinLLMs,suchasChatGPT.LLMsunderlietherapidriseofgenerativeAI(“genAI”),whichgeneratescontentbasedonsuitableprompts,andcanperformtasksbeyondlanguagerecognition.LLMsareneuralnetworksthataretrainedtopredictthenextwordinagivensequenceoftext.Toperformthistask,LLMslearntoabsorballthewrittenknowledgeonwhichtheyweretrained.Asaresult,theirpredictionisusuallyaccurateevenfortextsthatrequirenuanceorfieldknowledge.LLMscanbefine-tunedforspecifictaskswithspecialiseddata.Forexample,ChatGPTisbasedonanLLMrefinedwithhumanfeedbacktogeneratemoreusefulresponses.KeycharacteristicsofgenAIarethatitcanbeusednotjustbyasmallsetofspecialistsbutbyvirtuallyeverybodyandthatitcaneasilyextractinsightsfromunstructureddata.MachinelearningandAIincentralbanks:usecasesWhatarethecurrentusecasesofmachinelearningandAIincentralbanks?Theycanbestbeorganisedbyscope:(i)informationcollectionandstatisticalcompilation;(ii)macroeconomicandfinancialanalysistosupportmonetarypolicy;(iii)oversightofpaymentsystems;and(iv)supervisionandfinancialstability.Thissectionprovidesrelevantexamplesineacharea.Moreinformationontheselectedexamples,aswellasabroaderlistofusecases,canbefoundintheannex.2BISBulletinInformationcollectionEnsuringtheavailabilityofhigh-qualitydataasinputsforeconomicanalysisandforstatisticscompilationandproductionisamajorchallengeforcentralbanks.Issuesincludedatacleaning,sampling,representativenessandmatchingnewdatatoexistingsources.Thesteadilyincreasingvolumeandcomplexityofdatanecessitateefficientandflexibledataqualitytools.Toprovidehigh-qualitymicrodata,centralbanksareprogressivelyusingmachinelearningtechniques.Isolationforestsareparticularlysuitableforthelargeandgranulardatasetstypicalofcentralbanks,owingtotheirscalabilityandabilitytoidentifyoutliersregardlessoftheshapeofthedata’sdistribution.Therearealsobenefitstoatwo-stepapproach:initially,amodelautonomouslyidentifiespotentialoutliers,whicharethenreviewedbyexpertswhoprovidefeedbacktorefinethealgorithm.Thisapproachbalancesthevalueofdomainexpertisewiththecostsofhumaninputs.Byanalysingdifferentmethodstoexplaintheoutlierclassification,thisapproachcanovercometheissueof“blackbox”machinelearningmodelslacking“explainability”,whichisdiscussedbelow.Moreover,explainablemachinelearningmethodsprovideexpertswithguidanceonwhichdatapointswarrantmanualverification.MacroeconomicandfinancialanalysistosupportmonetarypolicyCentralbanksrelyextensivelyonmacroeconomicandfinancialanalysistosupportmonetarypolicy.Inacomplexenvironment,asignificantchallengeistoefficientlyextractinformationfromawidearrayoftraditionalandnon-traditionaldatasources.Machinelearningoffersvaluabletoolsinthisarea.Neuralnetworkscan,forexample,breakdownservicesinflationintodifferentcomponents,revealinghowmuchinflationisduetopastpriceincreases,inflationexpectations,theoutputgaporinternationalprices.Suchmodelscanprocessmoreinputvariablesthantraditionaleconometricones,allowingcentralbankstousegranulardatasetsinsteadofmoreaggregatedata.Anotheradvantageisneuralnetworks’abilitytoreflectcomplexnon-linearitiesinthedata,whichcanhelpmodellerstobettercapturenon-linearities,fromthezerolowerboundtounequalassetholdingsandshiftsininflationdynamics.Otherusecasesareobtainingreal-timeestimates(nowcasts)ofinflationexpectationsorsummarisingeconomicconditionsovertime.Forexample,randomforestmodelscanidentifysocialmediapoststhatarerelatedtopricesandthenfeedthemintoanotherrandomforestmodelthatclassifieseachpostasreflectinginflation,deflationorotherexpectations.Thedifferenceinthedailycountsofsocialmediapostsforhigherversuslowerinflationgaugesinflationexpectations.Similarly,socialmediapostscanbeusedtotrackthecredibilityofcentralbankmonetarypolicywiththewiderpublic.AnotherexampleistheuseofopensourceLLMsfine-tunedwithfinancialnewstosummariseeconomicconditionnarrativesoveralongtimespan.Modelscanprocesseganecdotaltextsfrominterviewswithentrepreneurs,economistsandmarketexpertstoproduceatimeseriesoftheir(positiveornegative)sentimentvalue.ThesentimentindexcanthenbeusedtonowcastGDPorpredictrecessions.AdaptingLLMstocentralbankingterminologycanbringfurthergains,asshownbythecentralbanklanguagemodels(CB-LM)projectdevelopedattheBIS(Gambacortaetal(2024)).ThisapproachusesthousandsofcentralbankspeechesandresearchpaperscompiledbytheBISCentralBankHubtoadaptwidelyusedopensourcefoundationLLMsissuedbyGoogleandMeta.Thisadditionaltrainingfocusedoncentralbankingtextsincreasedaccuracyfrom50–60%to90%ininterpretingcentralbankterminologyandidioms.IthasalsoimprovedperformanceintaskssuchasclassifyingFederalOpenMarketCommitteepolicystancesandpredictingmarketreactionstomonetarypolicyannouncements.OversightofpaymentsystemsWellfunctioningpaymentsystemsarefundamentaltothestabilityofthefinancialsystem,yetthevastamountoftransactiondata,oftenwithahighlyskeweddistribution,poseschallengesindistinguishinganomaloustransactionsfromregularones.CorrectlyidentifyinganomalouspaymentsiscrucialtoBISBulletin3addressingissuessuchaspotentialbankfailures,cyberattacksorfinancialcrimesinatimelymanner.Moneylaundering,inparticular,underminestheintegrityandsafetyoftheglobalfinancialsystem.TheBISInnovationHub’sProjectAurorausessyntheticmoneylaunderingdatatocomparefraudulentpaymentidentificationbyvarioustraditionalandmachinelearningmodels(BISIH(2023)).Themodels,whichincludeisolationforestsandneuralnetworks,undergotrainingwithknown(synthetic)moneylaunderingtransactionsandthenpredictthelikelihoodofmoneylaunderinginunseendata.Machinelearningmodelsoutperformtherule-basedmethodsprevalentinmostjurisdictionsortraditionallogisticregressions.Graphneuralnetworks,whichtakepaymentrelationshipsasinput,identifysuspecttransactionnetworksparticularlywell.Thesemodelscanfunctioneffectivelyevenwithdatapoolingthatsafeguardsconfidentiality,suggestingthatcooperationtojointlyanalysemultipledatabasescanbesecureandbeneficial.Thisillustratesthepotentialformorecooperationbetweenauthorities.Anotherapproachforoverseeingpaymenttransactionsinvolvestheuseofunsupervisedlearningmethodstoautomaticallysingleouttransactionsthatareworthcloserinspection.Forexample,auto-encodermodels,neuralnetworkswhereboththeinputandoutputlayerslookatthesamedata,distinguishtypicalfromanomalouspaymentsandcandetectnon-lineardynamicssuchasbankruns.Insimulations,thesemodelseffectivelyidentifiedpatternsofsignificantbankdepositwithdrawalsoverseveraldays.Auto-encodersalsoidentifiedarangeofreal-lifeanomaliesinpaymentsystems,includingoperationaldisruptionsamongimportantdomesticbanks.SupervisionandfinancialstabilitySupervisorsanalyseabroadrangeofdatasourcestoefficientlyoverseefinancialinstitutions.Thesesourcesincludetextdocumentssuchasnewsarticles,internalbankdocumentsorsupervisoryassessments.Siftingthroughthiswealthofinformationtoextractrelevantinsightscanbetime-consuming,andwiththeeverincreasingvolumeofdataitbecomesnearlyinsurmountable.Moreover,analysesrelatedtoclimateandcyberriskshaveemergedassupervisorypriorities,buttheylackthecomprehensivedatainfrastructurealreadyinplaceformore“traditional”risks.Oneavenuepursuedbymanycentralbanksistoconsolidatethewealthofinformationinoneplaceandhelpsupervisoryanalysisofunstructureddata.Forexample,modelsfine-tunedonsupervisorycontenttogetherwithNLPtechniquescanclassifypublicandsupervisorydocuments,undertakesentimentanalysesandidentifytrendingtopics,asdoneintheECB’splatformAthena.Trainingmodelsonalargebodyoftextcombinedwithanexpert-definedlexiconofrelevantwordsandclausescanalsohelpautomatethediscoveryofexcerptscontaininginformationondifferentrisks.Suchmodels,forexampletheFederalReserve’sLEX,facilitatesupervisors’accesstorelevantinformationscatteredacrossmillionsofdocumentsandreducethetimespentreviewingdocumentsubmissions.Classificationmodels,leveragingtree-basedtechniquesorneuralnetworks,canalsohelpidentifyindividualborrowersforwhichlendersunderestimatepotentialcreditlosses,ataskforwhichtheCentralBankofBrazilcreatedADAM.Neuralnetworksthatincludethefirstlayersofatrainednetworkcanimproveidentificationofborrowerswithhighexpectedlosses.Supervisorscanthenrequirefinancialinstitutionstoprovisionexposuresthatarenotsufficientlycovered.BalancingopportunitiesandchallengesTheaboveexamplesillustratetheopportunitiesformachinelearningandAItotackleproblemsattheheartofcentralbankmandates.Yettherearealsonewchallenges,somemoregeneralandothersmorespecifictocentralbanks.Ageneralchallengeistheconflictbetweenaccuracyand“interpretability/explainability”.Sophisticatedmachinelearningmodelscanbecomenearperfectatprediction.Butsincemanyvariablesinteractincomplexandnon-linearways,itcanbedifficulttointerprethowimportantdifferentinputvariablesarefortheresult.Goodpredictioncanhencecomeatthecostofacceptingthattheunderlying4BISBulletinmodelisa“blackbox”.Thiscan,forexample,makeitchallengingtoassessdiscriminatorybiasesinalgorithms,especiallywhenthesehavebeentrainedonbiaseddatasets.Limitedexplainabilityfurthermeansthatitisdifficulttoexplainmodelbehaviourinhumanterms;forexample,whyinflationispredictedtogouporwhyamortgageapplicationwasrejected.ForgenAImodels,theissuegoesevenfurther,astheysufferfromthe“hallucinationproblem”.Thesemodelsmightpresentafactuallyincorrectanswerasifitwerecorrect.ThehallucinationproblemimpliesthatLLMsneedhumansupervision,especiallyintasksrequiringlogicalreasoning(Perez-CruzandShin(2024)).Forcentralbanks,theuseofunstructureddatacanoffervaluableinformationthatcanhelpsolvepreviouslyintractableproblems.Manuallyconvertingunstructureddata,inparticulartext,intostructuredformistime-consuming,pronetohumanerrorandinfeasibleatalargerscale.Astheaboveexamplesmakeclear,LLMscanhelpcentralbanksanalyseawiderangeoftextualdata,suchassocialmediaactivity,financialnewsandcentralbanks’ownreports(confidentialorpublic).Theuseofunstructuredandoftenpersonaldata,however,posesnewchallengesintermsoflegalframeworksanddataprivacy.Traditionally,mostdatawerecollectedandhostedwithinpublicinstitutionswithclearlydefinedaccessrightsandsounddataqualityassuranceprocesses.Butnow,largeswathesofdataarecreatedbyindividualsandfirmsandresidewiththeprivatesector,sometimeswithlittledocumentationpubliclyavailable.Trainingorfine-tuningLLMsmayrequiresignificantamountsofdata,whichcanbeobtained,forexamplebywebscrapinginformationfrommarketplatformsorsocialmedia,butforwhichlegalframeworksoftenremainunclearabouthowandforwhatpurposestheycanbeused.Theavailabilityofunstructuredpersonaldataalsoraisesconcernsaboutethicsandprivacy.Citizenshavearighttoprivacyandmightfeeluncomfortablewithcentralbanksscrutinisingtheirdata.Whileprivacy-enhancingtechnologiesaresteadilyimproving,theyarenotyetadefaultinAImodels.GreateruseofAIcouldalsohaveprofoundimplicationsforcentralbanks’investmentsininformationtechnology(IT)andhumancapital.Providingadequatecomputingpowerandsoftware,aswellastrainingexistingstaff,involveshighupfrontcosts.Meanwhile,hiringnewstafforretainingexistingstaffwiththerightmixofeconomicunderstandingandprogrammingskillscanbechallenging:thereishighdemandforthisresource,andpublicinstitutionsoftencannotmatchprivatesectorsalariesfortopdatascientists.However,theseinvestmentscould,overtime,yieldincreasedproductivity.TheaboveexamplessuggestthattheuseofmachinelearningandAIcanmarkedlyraisestaffproductivity–inparticularinsometime-intensivetasksthatrequirecognitivework,suchassummarisingandextractinginformationfromtext(Brynjolfssonetal(2023),NoyandZhang(2023)).Forexample,AIsystemscouldactas“co-pilots”tohumansupervisoryteamsbylearningfromacombinationofregulatorydata,priorsupervisoryactionsandbroadermarketdevelopments.AIcouldalsoimproveanalysisbyfreeingupeconomists’timeforinterpretingdataratherthancollectingandcleaningit.YetAIwillnotmakehumansobsolete.Incorporatingexpertfeedbackcanimprovemodelsandmitigatethehallucinationproblem.Thebusinessexpertiseofstaffhelpstoidentifywheremodelsaddthemostvalueaswellashowtoadaptthemtocentralbank-specifictasks.Finally,theriseofLLMsandgenerativeAIhasrenewedconcernsaboutdependenceonafewexternalproviders.Largeeconomiesofscalemeanthatthemostpowerfulfoundationmodelsareprovidedbyjustafewlargetechnologyfirms.Beyondthegeneralrisksthatmarketconcentrationposestoinnovationandeconomicdynamism,thishighconcentrationofresourcescouldcreatesignificantfinancialstability,operationalandreputationalrisks.Forexample,greaterrelianceonLLMsandgenAIbyjustafewcompaniesmakesthefinancialsystemsusceptibletospilloversfromITfailuresorcyberattacksontheseproviders.Outagesamongproviderscouldalsoleadtooperationalrisksforcentralbanksandhaverepercussionsfortheirabilitytofulfiltheirmandates.Theriskofoperationalproblemsleadingtoreputationalcostsloomslargeascentralbanks’greatestassetisthepublic’strust(Doerretal(2022)).Atthesametime,ifmanyinstitutionsadoptthesamefewbestinclassalgorithms,theirbehaviourduringstressepisodesmightlookincreasinglyalikeandleadtoundesirablephenomenasuchasliquidityhoarding,interbankrunsandfiresales(DanielsonandUthemann(2023)).BISBulletin5Theselessonsunderscorethebenefitsofcooperationamongcentralbanksandotherpublicauthorities.Knowledge-sharingandthepoolingofexpertisearewellestablishedinthecentralbankingcommunity,andcentralbanks’publicpolicymandategivesconsiderablescopeforcooperation,aswellastoestablishacommunityofpracticeformachinelearningandAI.CentralbankcollaborationandthesharingofexperiencescouldalsohelpidentifyareasinwhichAIaddsthemostvalueandhowtoleveragesynergies.Datastandardscouldfacilitatetheautomatedcollectionofrelevantdatafromvariousofficialsources,therebyenhancingthetrainingandperformanceofmachinelearningmodelsthatusemacroeconomicdata(Araujo(2023)).Additionally,thesharingofcodeorpre-trainedmodelsholdmuchpromise.Centralbankingisparticularlywellsuitedfortheapplicationofmachinelearningtechniquesgiventheavailabilityofstructuredandunstructureddataaswellastheneedforrigorousanalysisinsupportofpolicy.Thesynergiesbetweenmachinelearningandcorecentralbankingdisciplinessuchaseconomics,statisticsandeconometricsarelikelytoplacecentralbanksatthevanguardofadvancesinAI.ReferencesAraujo,DKG(2023):“gingado:amachinelearninglibraryfocusedoneconomicsandfinance”,BISWorkingPapers,no1122.Araujo,DKG,GBruno,JMarcucci,RSchmidtandBTissot(2022):“Machinelearningapplicationsincentralbanking:anoverview”,IFCBulletin,no57.———(2023):“Datascienceincentralbanking:applicationsandtools”,IFCBulletin,no59.Athey,SandGImbens(2021):“Machinelearningmethodsthateconomistsshouldknowabout”,AnnualReviewofEconomics,no11,pp685–725.BISInnovationHub(BISIH)(2023):ProjectAurora:thepowerofdata,technologyandcollaborationtocombatmoneylaunderingacrossinstitutionsandborders,May.Brynjolfsson,E,DLiandLRaymond(2023):“GenerativeAIatwork”,NBERWorkingPapers,no31161.Danielson,JandAUthemann(2023):“Ontheuse
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 歷史期末工作總結(6篇)
- 外科醫(yī)生半年述職報告(8篇)
- 項目資料員工作總結
- 第二學期政教處工作總結(4篇)
- 燃氣隱患排查工作的匯報材料(7篇)
- 山東省菏澤市單縣2024-2025學年九年級下學期4月期中 歷史
- 湖南省婁底市漣源市2024-2025學年五年級下學期4月期中語文試題(有答案)
- 第一單元 觀察物體(三) ??家族e題單元提升測試 (無答案)2024-2025學年人教版五年級下冊數(shù)學
- 2025屆陜西省漢中市二模生物試題(有答案)
- 2023年湖南省交通規(guī)劃勘察設計院有限公司春季招聘63人筆試參考題庫附帶答案詳解
- 2025年中國甲魚行業(yè)市場全景評估及發(fā)展戰(zhàn)略規(guī)劃報告
- 2025年中國汽車道路救援行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y方向研究報告
- 學校食堂安全風險管控清單
- 品牌管理塑造、傳播與維護課件 第7章 品牌傳播管理
- 2025中交第一航務工程局限公司招聘69人易考易錯模擬試題(共500題)試卷后附參考答案
- 施工現(xiàn)場質量、安全生產(chǎn)管理體系
- 2025年河北省衡水市九年級中考模擬預測歷史試題(含答案)
- 2025保安證考試模擬試卷及答案
- 腹部腫瘤患者的護理
- (高清版)DB11∕T2326-2024油氣管道高后果區(qū)識別與管理規(guī)范
- 《證券投資學》形考題庫考試題及標準答案
評論
0/150
提交評論