2024屆甘肅省白銀市中考一模數(shù)學(xué)試題含解析_第1頁
2024屆甘肅省白銀市中考一模數(shù)學(xué)試題含解析_第2頁
2024屆甘肅省白銀市中考一模數(shù)學(xué)試題含解析_第3頁
2024屆甘肅省白銀市中考一模數(shù)學(xué)試題含解析_第4頁
2024屆甘肅省白銀市中考一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆甘肅省白銀市中考一模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知⊙O的半徑為5,弦AB=6,P是AB上任意一點(diǎn),點(diǎn)C是劣弧的中點(diǎn),若△POC為直角三角形,則PB的長度()A.1 B.5 C.1或5 D.2或42.化簡的結(jié)果是()A. B. C. D.3.為喜迎黨的十九大召開,樂陵某中學(xué)剪紙社團(tuán)進(jìn)行了剪紙大賽,下列作品既是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.4.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長是()A.π B. C.π D.π5.一個(gè)幾何體的俯視圖如圖所示,其中的數(shù)字表示該位置上小正方體的個(gè)數(shù),那么這個(gè)幾何體的主視圖是()A. B. C. D.6.如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長為()A. B. C. D.7.如圖,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得△DBE,點(diǎn)C的對應(yīng)點(diǎn)E給好落在AB的延長線上,連接AD,下列結(jié)論不一定正確的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE8.如圖,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點(diǎn)F,則線段DF的長為()A.7 B.8 C.9 D.109.小明乘出租車去體育場,有兩條路線可供選擇:路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時(shí)的平均車速能提高80%,因此能比走路線一少用10分鐘到達(dá).若設(shè)走路線一時(shí)的平均速度為x千米/小時(shí),根據(jù)題意,得A.25x-C.30(1+80%)x-10.下列圖案中,是軸對稱圖形的是()A. B. C. D.11.某運(yùn)動器材的形狀如圖所示,以箭頭所指的方向?yàn)樽笠暦较颍瑒t它的主視圖可以是()A.B.C.D.12.下列“慢行通過,注意危險(xiǎn),禁止行人通行,禁止非機(jī)動車通行”四個(gè)交通標(biāo)志圖(黑白陰影圖片)中為軸對稱圖形的是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.若實(shí)數(shù)m、n在數(shù)軸上的位置如圖所示,則(m+n)(m-n)________0,(填“>”、“<”或“=”)14.某自然保護(hù)區(qū)為估計(jì)該地區(qū)一種珍稀鳥類的數(shù)量,先捕捉了20只,給它們做上標(biāo)記后放回,過一段時(shí)間待它們完全混合于同類后又捕捉了20只,發(fā)現(xiàn)其中有4只帶有標(biāo)記,從而估計(jì)該地區(qū)此種鳥類的數(shù)量大約有______只15.某商場對今年端午節(jié)這天銷售A、B、C三種品牌粽子的情況進(jìn)行了統(tǒng)計(jì),繪制了如圖1和圖2所示的統(tǒng)計(jì)圖,則B品牌粽子在圖2中所對應(yīng)的扇形的心角的度數(shù)是_____.16.已知關(guān)于x的一元二次方程(a-1)x2-2x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是_______________.17.用配方法解方程3x2﹣6x+1=0,則方程可變形為(x﹣__)2=__.18.化簡:32三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)有4張正面分別標(biāo)有數(shù)字﹣1,2,﹣3,4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從4張卡片中隨機(jī)摸出一張不放回,將該卡片上的數(shù)字記為m,在隨機(jī)抽取1張,將卡片的數(shù)字即為n.(1)請用列表或樹狀圖的方式把(m,n)所有的結(jié)果表示出來.(2)求選出的(m,n)在二、四象限的概率.20.(6分)(1)如圖1,正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點(diǎn)G,求證:AE=BF;(2)如圖2,矩形ABCD中,AB=2,BC=3,點(diǎn)E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點(diǎn)M,探究AE與BF的數(shù)量關(guān)系,并證明你的結(jié)論;(3)在(2)的基礎(chǔ)上,若AB=m,BC=n,其他條件不變,請直接寫出AE與BF的數(shù)量關(guān)系;.21.(6分)(1)問題:如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ時(shí),上述結(jié)論是否依然成立.說明理由.(3)應(yīng)用:請利用(1)(2)獲得的經(jīng)驗(yàn)解決問題:如圖3,在△ABD中,AB=6,AD=BD=1.點(diǎn)P以每秒1個(gè)單位長度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動,且滿足∠DPC=∠A.設(shè)點(diǎn)P的運(yùn)動時(shí)間為t(秒),當(dāng)DC的長與△ABD底邊上的高相等時(shí),求t的值.22.(8分)某學(xué)校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費(fèi)2000元,購買乙種足球共花費(fèi)1400元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個(gè)乙種足球比購買一個(gè)甲種足球多花20元;(1)求購買一個(gè)甲種足球、一個(gè)乙種足球各需多少元;(2)2018年這所學(xué)校決定再次購買甲、乙兩種足球共50個(gè).恰逢該商場對兩種足球的售價(jià)進(jìn)行調(diào)整,甲種足球售價(jià)比第一次購買時(shí)提高了10%,乙種足球售價(jià)比第一次購買時(shí)降低了10%.如果此次購買甲、乙兩種足球的總費(fèi)用不超過2910元,那么這所學(xué)校最多可購買多少個(gè)乙種足球?23.(8分)拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.求此拋物線的解析式;已知點(diǎn)D在第四象限的拋物線上,求點(diǎn)D關(guān)于直線BC對稱的點(diǎn)D’的坐標(biāo);在(2)的條件下,連結(jié)BD,問在x軸上是否存在點(diǎn)P,使,若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.24.(10分)已知,四邊形ABCD中,E是對角線AC上一點(diǎn),DE=EC,以AE為直徑的⊙O與邊CD相切于點(diǎn)D,點(diǎn)B在⊙O上,連接OB.求證:DE=OE;若CD∥AB,求證:BC是⊙O的切線;在(2)的條件下,求證:四邊形ABCD是菱形.25.(10分)(7分)某中學(xué)1000名學(xué)生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:成績分組頻數(shù)頻率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合計(jì)■1(1)寫出a,b,c的值;(2)請估計(jì)這1000名學(xué)生中有多少人的競賽成績不低于70分;(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識宣傳活動,求所抽取的2名同學(xué)來自同一組的概率.26.(12分)如圖,已知△ABC為等邊三角形,點(diǎn)D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點(diǎn)F.求證:△ABE≌△CAD;求∠BFD的度數(shù).27.(12分)如圖,在平行四邊形ABCD中,BD是對角線,∠ADB=90°,E、F分別為邊AB、CD的中點(diǎn).(1)求證:四邊形DEBF是菱形;(2)若BE=4,∠DEB=120°,點(diǎn)M為BF的中點(diǎn),當(dāng)點(diǎn)P在BD邊上運(yùn)動時(shí),則PF+PM的最小值為,并在圖上標(biāo)出此時(shí)點(diǎn)P的位置.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

由點(diǎn)C是劣弧AB的中點(diǎn),得到OC垂直平分AB,求得DA=DB=3,根據(jù)勾股定理得到OD==1,若△POC為直角三角形,只能是∠OPC=90°,則根據(jù)相似三角形的性質(zhì)得到PD=2,于是得到結(jié)論.【詳解】∵點(diǎn)C是劣弧AB的中點(diǎn),∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC為直角三角形,只能是∠OPC=90°,則△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根據(jù)對稱性得,當(dāng)P在OC的左側(cè)時(shí),PB=3+2=5,∴PB的長度為1或5.故選C.【點(diǎn)睛】考查了圓周角,弧,弦的關(guān)系,勾股定理,垂徑定理,正確左側(cè)圖形是解題的關(guān)鍵.2、D【解析】

將除法變?yōu)槌朔?,化簡二次根式,再用乘法分配律展開計(jì)算即可.【詳解】原式=×=×(+1)=2+.故選D.【點(diǎn)睛】本題主要考查二次根式的加減乘除混合運(yùn)算,掌握二次根式的混合運(yùn)算法則是解題關(guān)鍵.3、C【解析】

根據(jù)軸對稱和中心對稱的定義去判斷即可得出正確答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)錯(cuò)誤;B、不是軸對稱圖形,也不是中心對稱圖形,故此選項(xiàng)錯(cuò)誤;C、是軸對稱圖形,也是中心對稱圖形,故此選項(xiàng)正確;D、是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】本題考查的是軸對稱和中心對稱的知識點(diǎn),解題關(guān)鍵在于對知識點(diǎn)的理解和把握.4、C【解析】

由切線的性質(zhì)定理得出∠OAB=90°,進(jìn)而求出∠AOB=60°,再利用弧長公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長是:=,故選:C.【點(diǎn)睛】本題考查了切線的性質(zhì),圓周角定理,弧長的計(jì)算,解題的關(guān)鍵是先求出角度再用弧長公式進(jìn)行計(jì)算.5、A【解析】

一一對應(yīng)即可.【詳解】最左邊有一個(gè),中間有兩個(gè),最右邊有三個(gè),所以選A.【點(diǎn)睛】理解立體幾何的概念是解題的關(guān)鍵.6、B【解析】

過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據(jù)勾股定理得到AF===,根據(jù)平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質(zhì)得到=,求得AM=AF=,根據(jù)相似三角形的性質(zhì)得到=,求得AN=AF=,即可得到結(jié)論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,F(xiàn)C=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點(diǎn)睛】構(gòu)造相似三角形是本題的關(guān)鍵,且求長度問題一般需用到勾股定理來解決,常作垂線7、C【解析】

利用旋轉(zhuǎn)的性質(zhì)得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通過判斷△ABD為等邊三角形得到AD=AB,∠BAD=60°,則根據(jù)平行線的性質(zhì)可判斷AD∥BC,從而得到∠DAC=∠C,于是可判斷∠DAC=∠E,接著利用AD=AB,BE=BC可判斷AD+BC=AE,利用∠CBE=60°,由于∠E的度數(shù)不確定,所以不能判定BC⊥DE.【詳解】∵△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得△DBE,點(diǎn)C的對應(yīng)點(diǎn)E恰好落在AB的延長線上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD為等邊三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有當(dāng)∠E=30°時(shí),BC⊥DE.故選C.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等邊三角形的性質(zhì).8、B【解析】

根據(jù)三角形中位線定理求出DE,得到DF∥BM,再證明EC=EF=AC,由此即可解決問題.【詳解】在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,∴AC===10,∵DE是△ABC的中位線,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=2.故選B.9、A【解析】若設(shè)走路線一時(shí)的平均速度為x千米/小時(shí),根據(jù)路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時(shí)的平均車速能提高80%,因此能比走路線一少用10分鐘到達(dá)可列出方程.解:設(shè)走路線一時(shí)的平均速度為x千米/小時(shí),25故選A.10、B【解析】

根據(jù)軸對稱圖形的定義,逐一進(jìn)行判斷.【詳解】A、C是中心對稱圖形,但不是軸對稱圖形;B是軸對稱圖形;D不是對稱圖形.故選B.【點(diǎn)睛】本題考查的是軸對稱圖形的定義.11、B【解析】從幾何體的正面看可得下圖,故選B.12、B【解析】

根據(jù)軸對稱圖形的概念對各選項(xiàng)分析判斷即可得出答案.【詳解】A.不是軸對稱圖形,故本選項(xiàng)錯(cuò)誤;B.是軸對稱圖形,故本選項(xiàng)正確;C.不是軸對稱圖形,故本選項(xiàng)錯(cuò)誤;D.不是軸對稱圖形,故本選項(xiàng)錯(cuò)誤.故選B.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、>【解析】

根據(jù)數(shù)軸可以確定m、n的大小關(guān)系,根據(jù)加法以及減法的法則確定m+n以及m?n的符號,可得結(jié)果.【詳解】解:根據(jù)題意得:m<1<n,且|m|>|n|,∴m+n<1,m?n<1,∴(m+n)(m?n)>1.故答案為>.【點(diǎn)睛】本題考查了整式的加減和數(shù)軸,熟練掌握運(yùn)算法則是解題的關(guān)鍵.14、1【解析】

求出樣本中有標(biāo)記的所占的百分比,再用樣本容量除以百分比即可解答.【詳解】解:

只.

故答案為:1.【點(diǎn)睛】本題考查的是通過樣本去估計(jì)總體,總體百分比約等于樣本百分比.15、120°【解析】

根據(jù)圖1中C品牌粽子1200個(gè),在圖2中占50%,求出三種品牌粽子的總個(gè)數(shù),再求出B品牌粽子的個(gè)數(shù),從而計(jì)算出B品牌粽子占粽子總數(shù)的比例,從而求出B品牌粽子在圖2中所對應(yīng)的圓心角的度數(shù).【詳解】解:∵三種品牌的粽子總數(shù)為1200÷50%=2400個(gè),又∵A、C品牌的粽子分別有400個(gè)、1200個(gè),∴B品牌的粽子有2400-400-1200=800個(gè),則B品牌粽子在圖2中所對應(yīng)的圓心角的度數(shù)為360×.故答案為120°.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?6、a<2且a≠1.【解析】

利用一元二次方程根的判別式列不等式,解不等式求出a的取值范圍.【詳解】試題解析:∵關(guān)于x的一元二次方程(a-1)x2-2x+l=0有兩個(gè)不相等的實(shí)數(shù)根,∴△=b2-4ac>0,即4-4×(a-2)×1>0,解這個(gè)不等式得,a<2,又∵二次項(xiàng)系數(shù)是(a-1),∴a≠1.故a的取值范圍是a<2且a≠1.【點(diǎn)睛】本題考查的是一元二次方程根的判別式,根據(jù)方程有兩不等的實(shí)數(shù)根,得到判別式大于零,求出a的取值范圍,同時(shí)方程是一元二次方程,二次項(xiàng)系數(shù)不為零.17、1【解析】原方程為3x2?6x+1=0,二次項(xiàng)系數(shù)化為1,得x2?2x=?,即x2?2x+1=?+1,所以(x?1)2=.故答案為:1,.18、-6【解析】

根據(jù)二次根式的乘法運(yùn)算法則以及絕對值的性質(zhì)和二次根式的化簡分別化簡整理得出即可:【詳解】32故答案為-6三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)P=.【解析】試題分析:(1)樹狀圖列舉所有結(jié)果.(2)用在第二四象限的點(diǎn)數(shù)除以所有結(jié)果.試題解析:(1)畫樹狀圖得:

則(m,n)共有12種等可能的結(jié)果:(2,-1),(2,﹣3),(2,4),(-1,2),(-1,﹣3),(1,4),(﹣3,2),(﹣3,-1),(﹣3,4),(﹣4,2),(4,-1),(4,﹣3).

(2)(m,n)在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3,4),(﹣4,2),(4,-1),(4,﹣3),

∴所選出的m,n在第二、三四象限的概率為:P==點(diǎn)睛:(1)利用頻率估算法:大量重復(fù)試驗(yàn)中,事件A發(fā)生的頻率會穩(wěn)定在某個(gè)常數(shù)p附近,那么這個(gè)常數(shù)P就叫做事件A的概率(有些時(shí)候用計(jì)算出A發(fā)生的所有頻率的平均值作為其概率).(2)定義法:如果在一次試驗(yàn)中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,考察事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P.(3)列表法:當(dāng)一次試驗(yàn)要設(shè)計(jì)兩個(gè)因素,可能出現(xiàn)的結(jié)果數(shù)目較多時(shí),為不重不漏地列出所有可能的結(jié)果,通常采用列表法.其中一個(gè)因素作為行標(biāo),另一個(gè)因素作為列標(biāo).(4)樹狀圖法:當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.20、(1)證明見解析;(2)AE=23BF,(3)AE=m【解析】

(1)根據(jù)正方形的性質(zhì),可得∠ABC與∠C的關(guān)系,AB與BC的關(guān)系,根據(jù)兩直線垂直,可得∠AMB的度數(shù),根據(jù)直角三角形銳角的關(guān)系,可得∠ABM與∠BAM的關(guān)系,根據(jù)同角的余角相等,可得∠BAM與∠CBF的關(guān)系,根據(jù)ASA,可得△ABE≌△BCF,根據(jù)全等三角形的性質(zhì),可得答案;(2)根據(jù)矩形的性質(zhì)得到∠ABC=∠C,由余角的性質(zhì)得到∠BAM=∠CBF,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(3)結(jié)論:AE=mn【詳解】(1)證明:∵四邊形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,∠BAE=∠CBFAB=CB∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如圖2中,結(jié)論:AE=23理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=23(3)結(jié)論:AE=mn理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=mn【點(diǎn)睛】本題考查了四邊形綜合題、相似三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),矩形的性質(zhì),熟練掌握全等三角形或相似三角形的判定和性質(zhì)是解題的關(guān)鍵.21、(2)證明見解析;(2)結(jié)論成立,理由見解析;(3)2秒或2秒.【解析】

(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運(yùn)用相似三角形的性質(zhì)即可解決問題;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運(yùn)用相似三角形的性質(zhì)即可解決問題;(3)過點(diǎn)D作DE⊥AB于點(diǎn)E,根據(jù)等腰三角形的性質(zhì)可得AE=BE=3,根據(jù)勾股定理可得DE=4,由題可得DC=DE=4,則有BC=2-4=2.易證∠DPC=∠A=∠B.根據(jù)ADBC=APBP,就可求出t的值.【詳解】解:(2)如圖2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴ADBC=APBP;(2)結(jié)論ADBC=APBP仍成立;證明:如圖2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴ADBC=APBP;(3)如下圖,過點(diǎn)D作DE⊥AB于點(diǎn)E,∵AD=BD=2,AB=6,∴AE=BE=3∴DE==4,∵以D為圓心,以DC為半徑的圓與AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(2)(2)的經(jīng)驗(yàn)得AD?BC=AP?BP,又∵AP=t,BP=6-t,∴t(6-t)=2×2,∴t=2或t=2,∴t的值為2秒或2秒.【點(diǎn)睛】本題考查圓的綜合題.22、(1)購買一個(gè)甲種足球需要50元,購買一個(gè)乙種籃球需要1元(2)這所學(xué)校最多可購買2個(gè)乙種足球【解析】

(1)根據(jù)題意可以列出相應(yīng)的分式方程,從而可以求得購買一個(gè)甲種足球、一個(gè)乙種足球各需多少元;(2)根據(jù)題意可以列出相應(yīng)的不等式,從而可以求得這所學(xué)校最多可購買多少個(gè)乙種足球.【詳解】(1)設(shè)購買一個(gè)甲種足球需要x元,則購買一個(gè)乙種籃球需要(x+2)元,根據(jù)題意得:,解得:x=50,經(jīng)檢驗(yàn),x=50是原方程的解,且符合題意,∴x+2=1.答:購買一個(gè)甲種足球需要50元,購買一個(gè)乙種籃球需要1元.(2)設(shè)可購買m個(gè)乙種足球,則購買(50﹣m)個(gè)甲種足球,根據(jù)題意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,解得:m≤2.答:這所學(xué)校最多可購買2個(gè)乙種足球.【點(diǎn)睛】本題考查分式方程的應(yīng)用,一元一次不等式的應(yīng)用,解答此類問題的關(guān)鍵是明確題意,列出相應(yīng)的分式方程和一元一次不等式,注意分式方程要檢驗(yàn),問題(2)要與實(shí)際相聯(lián)系.23、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】

(1)將A(?1,0)、C(0,?3)兩點(diǎn)坐標(biāo)代入拋物線y=ax2+bx?3a中,列方程組求a、b的值即可;(2)將點(diǎn)D(m,?m?1)代入(1)中的拋物線解析式,求m的值,再根據(jù)對稱性求點(diǎn)D關(guān)于直線BC對稱的點(diǎn)D'的坐標(biāo);(3)分兩種情形①過點(diǎn)C作CP∥BD,交x軸于P,則∠PCB=∠CBD,②連接BD′,過點(diǎn)C作CP′∥BD′,交x軸于P′,分別求出直線CP和直線CP′的解析式即可解決問題.【詳解】解:(1)將A(?1,0)、C(0,?3)代入拋物線y=ax2+bx?3a中,得,解得∴y=x2?2x?3;(2)將點(diǎn)D(m,?m?1)代入y=x2?2x?3中,得m2?2m?3=?m?1,解得m=2或?1,∵點(diǎn)D(m,?m?1)在第四象限,∴D(2,?3),∵直線BC解析式為y=x?3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3?2=1,∴點(diǎn)D關(guān)于直線BC對稱的點(diǎn)D'(0,?1);(3)存在.滿足條件的點(diǎn)P有兩個(gè).①過點(diǎn)C作CP∥BD,交x軸于P,則∠PCB=∠CBD,∵直線BD解析式為y=3x?9,∵直線CP過點(diǎn)C,∴直線CP的解析式為y=3x?3,∴點(diǎn)P坐標(biāo)(1,0),②連接BD′,過點(diǎn)C作CP′∥BD′,交x軸于P′,∴∠P′CB=∠D′BC,根據(jù)對稱性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直線BD′的解析式為∵直線CP′過點(diǎn)C,∴直線CP′解析式為,∴P′坐標(biāo)為(9,0),綜上所述,滿足條件的點(diǎn)P坐標(biāo)為(1,0)或(9,0).【點(diǎn)睛】本題考查了二次函數(shù)的綜合運(yùn)用.關(guān)鍵是由已知條件求拋物線解析式,根據(jù)拋物線的對稱性,直線BC的特殊性求點(diǎn)的坐標(biāo),學(xué)會分類討論,不能漏解.24、(1)證明見解析;(2)證明見解析;(3)證明見解析.【解析】

(1)先判斷出∠2+∠3=90°,再判斷出∠1=∠2即可得出結(jié)論;(2)根據(jù)等腰三角形的性質(zhì)得到∠3=∠COD=∠DEO=60°,根據(jù)平行線的性質(zhì)得到∠4=∠1,根據(jù)全等三角形的性質(zhì)得到∠CBO=∠CDO=90°,于是得到結(jié)論;(3)先判斷出△ABO≌△CDE得出AB=CD,即可判斷出四邊形ABCD是平行四邊形,最后判斷出CD=AD即可.【詳解】(1)如圖,連接OD,∵CD是⊙O的切線,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO與△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切線;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四邊形ABCD是平行四邊形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴?ABCD是菱形.【點(diǎn)睛】此題主要考查了切線的性質(zhì),同角的余角相等,等腰三角形的性質(zhì),平行四邊形的判定和性質(zhì),菱形的判定,判斷出△ABO≌△CDE是解本題的關(guān)鍵.25、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.【解析】

(1)利用50≤x<60的頻數(shù)和頻率,根據(jù)公式:頻率=頻數(shù)÷總數(shù)先計(jì)算出樣本總?cè)藬?shù),再分別計(jì)算出a,b,c的值;(2)先計(jì)算出競賽分?jǐn)?shù)不低于70分的頻率,根據(jù)樣本估計(jì)總體的思想,計(jì)算出1000名學(xué)生中競賽成績不低于70分的人數(shù);(3)列樹形圖或列出表格,得到要求的所有情況和2名同學(xué)來自一組的情況,利用求概率公式計(jì)算出概率.【詳解】解:(1)樣本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論