版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
浙江省寧波市海曙區(qū)2023-2024學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分線,DE⊥AB,垂足為點(diǎn)E,DE=1,則BC=()A. B.2 C.3 D.+22.已知2是關(guān)于x的方程x2-2mx+3m=0的一個(gè)根,并且這個(gè)方程的兩個(gè)根恰好是等腰三角形ABC的兩條邊長(zhǎng),則三角形ABC的周長(zhǎng)為()A.10 B.14 C.10或14 D.8或103.某校決定從三名男生和兩名女生中選出兩名同學(xué)擔(dān)任校藝術(shù)節(jié)文藝演出專場(chǎng)的主持人,則選出的恰為一男一女的概率是()A. B. C. D.4.甲、乙兩位同學(xué)做中國(guó)結(jié),已知甲每小時(shí)比乙少做6個(gè),甲做30個(gè)所用的時(shí)間與乙做45個(gè)所用的時(shí)間相等,求甲每小時(shí)做中國(guó)結(jié)的個(gè)數(shù).如果設(shè)甲每小時(shí)做x個(gè),那么可列方程為()A.= B.=C.= D.=5.如圖,立體圖形的俯視圖是A. B. C. D.6.如圖,AB∥ED,CD=BF,若△ABC≌△EDF,則還需要補(bǔ)充的條件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E7.下列計(jì)算中,正確的是()A. B. C. D.8.下列圖形是我國(guó)國(guó)產(chǎn)品牌汽車的標(biāo)識(shí),在這些汽車標(biāo)識(shí)中,是中心對(duì)稱圖形的是()A. B. C. D.9.若分式有意義,則a的取值范圍為()A.a(chǎn)≠4 B.a(chǎn)>4 C.a(chǎn)<4 D.a(chǎn)=410.下面計(jì)算中,正確的是()A.(a+b)2=a2+b2B.3a+4a=7a2C.(ab)3=ab3D.a(chǎn)2?a5=a711.如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,連接CD,若⊙O的半徑r=5,AC=53,則∠B的度數(shù)是(
)A.30°B.45°C.50°D.60°12.濟(jì)南市某天的氣溫:-5~8℃,則當(dāng)天最高與最低的溫差為()A.13 B.3 C.-13 D.-3二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.不等式>4﹣x的解集為_____.14.比較大?。?(填入“>”或“<”號(hào))15.如圖,在△ABC中,AB=AC=2,∠BAC=120°,點(diǎn)D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長(zhǎng)為________.16.規(guī)定一種新運(yùn)算“*”:a*b=a-b,則方程x*2=1*x的解為________.17.如圖,轉(zhuǎn)盤中6個(gè)扇形的面積相等,任意轉(zhuǎn)動(dòng)轉(zhuǎn)盤1次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針指向的數(shù)小于5的概率為_____.18.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,點(diǎn)D、E分別在邊AC、BC上,且CD:CE=3︰1.將△CDE繞點(diǎn)D順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)C落在線段DE上的點(diǎn)F處時(shí),BF恰好是∠ABC的平分線,此時(shí)線段CD的長(zhǎng)是________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,正方形ABCD中,E,F(xiàn)分別為BC,CD上的點(diǎn),且AE⊥BF,垂足為G.(1)求證:AE=BF;(2)若BE=,AG=2,求正方形的邊長(zhǎng).20.(6分)某班為確定參加學(xué)校投籃比賽的任選,在A、B兩位投籃高手間進(jìn)行了6次投籃比賽,每人每次投10個(gè)球,將他們每次投中的個(gè)數(shù)繪制成如圖所示的折線統(tǒng)計(jì)圖.(1)根據(jù)圖中所給信息填寫下表:投中個(gè)數(shù)統(tǒng)計(jì)平均數(shù)中位數(shù)眾數(shù)A8B77(2)如果這個(gè)班只能在A、B之間選派一名學(xué)生參賽,從投籃穩(wěn)定性考慮應(yīng)該選派誰?請(qǐng)你利用學(xué)過的統(tǒng)計(jì)量對(duì)問題進(jìn)行分析說明.21.(6分)如圖,將矩形紙片ABCD沿對(duì)角線BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DF交BC于點(diǎn)E.(1)求證:△DCE≌△BFE;(2)若AB=4,tan∠ADB=,求折疊后重疊部分的面積.22.(8分)如圖,在△ABC中,∠ABC=90°.(1)作∠ACB的平分線交AB邊于點(diǎn)O,再以點(diǎn)O為圓心,OB的長(zhǎng)為半徑作⊙O;(要求:不寫做法,保留作圖痕跡)(2)判斷(1)中AC與⊙O的位置關(guān)系,直接寫出結(jié)果.23.(8分)已知:如圖1,拋物線的頂點(diǎn)為M,平行于x軸的直線與該拋物線交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),根據(jù)對(duì)稱性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時(shí),就稱△AMB為該拋物線的“完美三角形”.(1)①如圖2,求出拋物線的“完美三角形”斜邊AB的長(zhǎng);②拋物線與的“完美三角形”的斜邊長(zhǎng)的數(shù)量關(guān)系是;(2)若拋物線的“完美三角形”的斜邊長(zhǎng)為4,求a的值;(3)若拋物線的“完美三角形”斜邊長(zhǎng)為n,且的最大值為-1,求m,n的值.24.(10分)我省有關(guān)部門要求各中小學(xué)要把“陽光體育”寫入課表,為了響應(yīng)這一號(hào)召,某校圍繞著“你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫一項(xiàng))”的問題,對(duì)在校學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù),如圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問題:該校對(duì)多少名學(xué)生進(jìn)行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡足球活動(dòng)的有多少人?占被調(diào)查人數(shù)的百分比是多少?若該校九年級(jí)共有400名學(xué)生,圖2是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)你估計(jì)全校學(xué)生中最喜歡籃球活動(dòng)的人數(shù)約為多少?25.(10分)已知a2+2a=9,求的值.26.(12分)在Rt△ABC中,∠BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn).過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F.(1)求證:△AEF≌△DEB;(2)證明四邊形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD的面積.27.(12分)2017年5月14日至15日,“一帶一路”國(guó)際合作高峰論壇在北京舉行,本屆論壇期間,中國(guó)同30多個(gè)國(guó)家簽署經(jīng)貿(mào)合作協(xié)議,某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國(guó)家和地區(qū).已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.(1)甲種商品與乙種商品的銷售單價(jià)各多少元?(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】試題分析:根據(jù)角平分線的性質(zhì)可得CD=DE=1,根據(jù)Rt△ADE可得AD=2DE=2,根據(jù)題意可得△ADB為等腰三角形,則DE為AB的中垂線,則BD=AD=2,則BC=CD+BD=1+2=1.考點(diǎn):角平分線的性質(zhì)和中垂線的性質(zhì).2、B【解析】試題分析:∵2是關(guān)于x的方程x2﹣2mx+3m=0的一個(gè)根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=1.①當(dāng)1是腰時(shí),2是底邊,此時(shí)周長(zhǎng)=1+1+2=2;②當(dāng)1是底邊時(shí),2是腰,2+2<1,不能構(gòu)成三角形.所以它的周長(zhǎng)是2.考點(diǎn):解一元二次方程-因式分解法;一元二次方程的解;三角形三邊關(guān)系;等腰三角形的性質(zhì).3、B【解析】試題解析:列表如下:∴共有20種等可能的結(jié)果,P(一男一女)=.
故選B.4、A【解析】
設(shè)甲每小時(shí)做x個(gè),乙每小時(shí)做(x+6)個(gè),根據(jù)甲做30個(gè)所用時(shí)間與乙做45個(gè)所用時(shí)間相等即可列方程.【詳解】設(shè)甲每小時(shí)做x個(gè),乙每小時(shí)做(x+6)個(gè),根據(jù)甲做30個(gè)所用時(shí)間與乙做45個(gè)所用時(shí)間相等可得=.故選A.【點(diǎn)睛】本題考查了分式方程的應(yīng)用,找到關(guān)鍵描述語,正確找出等量關(guān)系是解決問題的關(guān)鍵.5、C【解析】試題分析:立體圖形的俯視圖是C.故選C.考點(diǎn):簡(jiǎn)單組合體的三視圖.6、C【解析】
根據(jù)平行線性質(zhì)和全等三角形的判定定理逐個(gè)分析.【詳解】由,得∠B=∠D,因?yàn)?,若≌,則還需要補(bǔ)充的條件可以是:AB=DE,或∠E=∠A,∠EFD=∠ACB,故選C【點(diǎn)睛】本題考核知識(shí)點(diǎn):全等三角形的判定.解題關(guān)鍵點(diǎn):熟記全等三角形判定定理.7、D【解析】
根據(jù)積的乘方、合并同類項(xiàng)、同底數(shù)冪的除法以及冪的乘方進(jìn)行計(jì)算即可.【詳解】A、(2a)3=8a3,故本選項(xiàng)錯(cuò)誤;B、a3+a2不能合并,故本選項(xiàng)錯(cuò)誤;C、a8÷a4=a4,故本選項(xiàng)錯(cuò)誤;D、(a2)3=a6,故本選項(xiàng)正確;故選D.【點(diǎn)睛】本題考查了積的乘方、合并同類項(xiàng)、同底數(shù)冪的除法以及冪的乘方,掌握運(yùn)算法則是解題的關(guān)鍵.8、B【解析】由中心對(duì)稱圖形的定義:“把一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180°后,能夠與自身完全重合,這樣的圖形叫做中心對(duì)稱圖形”分析可知,上述圖形中,A、C、D都不是中心對(duì)稱圖形,只有B是中心對(duì)稱圖形.故選B.9、A【解析】
分式有意義時(shí),分母a-4≠0【詳解】依題意得:a?4≠0,解得a≠4.故選:A【點(diǎn)睛】此題考查分式有意義的條件,難度不大10、D【解析】
直接利用完全平方公式以及合并同類項(xiàng)法則、積的乘方運(yùn)算法則分別化簡(jiǎn)得出答案.【詳解】A.
(a+b)2=a2+b2+2ab,故此選項(xiàng)錯(cuò)誤;B.
3a+4a=7a,故此選項(xiàng)錯(cuò)誤;C.
(ab)3=a3b3,故此選項(xiàng)錯(cuò)誤;D.
a2a5=a7,正確。故選:D.【點(diǎn)睛】本題考查了冪的乘方與積的乘方,合并同類項(xiàng),同底數(shù)冪的乘法,完全平方公式,解題的關(guān)鍵是掌握它們的概念進(jìn)行求解.11、D【解析】根據(jù)圓周角定理的推論,得∠B=∠D.根據(jù)直徑所對(duì)的圓周角是直角,得∠ACD=90°.
在直角三角形ACD中求出∠D.則sinD=AC∠D=60°∠B=∠D=60°.故選D.“點(diǎn)睛”此題綜合運(yùn)用了圓周角定理的推論以及銳角三角函數(shù)的定義,解答時(shí)要找準(zhǔn)直角三角形的對(duì)應(yīng)邊.12、A【解析】由題意可知,當(dāng)天最高溫與最低溫的溫差為8-(-5)=13℃,故選A.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、x>1.【解析】
按照去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1的步驟求解即可.【詳解】解:去分母得:x﹣1>8﹣2x,移項(xiàng)合并得:3x>12,解得:x>1,故答案為:x>1【點(diǎn)睛】本題考查了一元一次不等式的解法,熟練掌握解一元一次不等式的步驟是解答本題的關(guān)鍵.14、>【解析】
試題解析:∵<∴4<.考點(diǎn):實(shí)數(shù)的大小比較.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?5、1-1.【解析】
將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△ACF,取CF的中點(diǎn)G,連接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根據(jù)旋轉(zhuǎn)的性質(zhì)可得出∠ECG=60°,結(jié)合CF=BD=2CE可得出△CEG為等邊三角形,進(jìn)而得出△CEF為直角三角形,通過解直角三角形求出BC的長(zhǎng)度以及證明全等找出DE=FE,設(shè)EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此題得解.【詳解】將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△ACF,取CF的中點(diǎn)G,連接EF、EG,如圖所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG為等邊三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF為直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.設(shè)EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案為:1-1.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)、勾股定理以及旋轉(zhuǎn)的性質(zhì),通過勾股定理找出方程是解題的關(guān)鍵.16、【解析】
根據(jù)題中的新定義化簡(jiǎn)所求方程,求出方程的解即可.【詳解】根據(jù)題意得:x-×2=×1-,x=,解得:x=,故答案為x=.【點(diǎn)睛】此題的關(guān)鍵是掌握新運(yùn)算規(guī)則,轉(zhuǎn)化成一元一元一次方程,再解這個(gè)一元一次方程即可.17、【解析】試題解析:∵共6個(gè)數(shù),小于5的有4個(gè),∴P(小于5)==.故答案為.18、2【解析】分析:設(shè)CD=3x,則CE=1x,BE=12﹣1x,依據(jù)∠EBF=∠EFB,可得EF=BE=12﹣1x,由旋轉(zhuǎn)可得DF=CD=3x,再根據(jù)Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+12﹣1x)2,進(jìn)而得出CD=2.詳解:如圖所示,設(shè)CD=3x,則CE=1x,BE=12﹣1x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣1x,由旋轉(zhuǎn)可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(1x)2=(3x+12﹣1x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=2.故答案為2.點(diǎn)睛:本題考查了相似三角形的判定與性質(zhì),勾股定理以及旋轉(zhuǎn)的性質(zhì),解題時(shí)注意:對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)正方形的邊長(zhǎng)為.【解析】
(1)由正方形的性質(zhì)得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA證得△ABE≌△BCF即可得出結(jié)論;(2)證出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG?AE,設(shè)EG=x,則AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出結(jié)果.【詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥BF,垂足為G,∴∠CBF+∠AEB=90°,∴∠BAE=∠CBF,在△ABE與△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵四邊形ABCD為正方形,∴∠ABC=90°,∵AE⊥BF,∴∠BGE=∠ABE=90°,∵∠BEG=∠AEB,∴△BGE∽△ABE,∴=,即:BE2=EG?AE,設(shè)EG=x,則AE=AG+EG=2+x,∴()2=x?(2+x),解得:x1=1,x2=﹣3(不合題意舍去),∴AE=3,∴AB===.【點(diǎn)睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理等知識(shí),熟練掌握正方形的性質(zhì),證明三角形全等與相似是解題的關(guān)鍵.20、(1)7,9,7;(2)應(yīng)該選派B;【解析】
(1)分別利用平均數(shù)、中位數(shù)、眾數(shù)分析得出答案;(2)利用方差的意義分析得出答案.【詳解】(1)A成績(jī)的平均數(shù)為(9+10+4+3+9+7)=7;眾數(shù)為9;B成績(jī)排序后為6,7,7,7,7,8,故中位數(shù)為7;故答案為:7,9,7;(2)=[(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;=[(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]=;從方差看,B的方差小,所以B的成績(jī)更穩(wěn)定,從投籃穩(wěn)定性考慮應(yīng)該選派B.【點(diǎn)睛】此題主要考查了中位數(shù)、眾數(shù)、方差的定義,方差是反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.21、(1)見解析;(2)1【解析】
(1)由矩形的性質(zhì)可知∠A=∠C=90°,由翻折的性質(zhì)可知∠A=∠F=90°,從而得到∠F=∠C,依據(jù)AAS證明△DCE≌△BFE即可;(2)由△DCE≌△BFE可知:EB=DE,依據(jù)AB=4,tan∠ADB=,即可得到DC,BC的長(zhǎng),然后再Rt△EDC中利用勾股定理列方程,可求得BE的長(zhǎng),從而可求得重疊部分的面積.【詳解】解:(1)∵四邊形ABCD是矩形,∴∠A=∠C=90°,AB=CD,由折疊可得,∠F=∠A,BF=AB,∴BF=DC,∠F=∠C=90°,又∵∠BEF=∠DEC,∴△DCE≌△BFE;(2)∵AB=4,tan∠ADB=,∴AD=8=BC,CD=4,∵△DCE≌△BFE,∴BE=DE,設(shè)BE=DE=x,則CE=8﹣x,在Rt△CDE中,CE2+CD2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴BE=5,∴S△BDE=BE×CD=×5×4=1.【點(diǎn)睛】本題考查了折疊的性質(zhì)、全等三角形的判定和性質(zhì)以及勾股定理的綜合運(yùn)用,折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.22、(1)見解析(2)相切【解析】
(1)首先利用角平分線的作法得出CO,進(jìn)而以點(diǎn)O為圓心,OB為半徑作⊙O即可;(2)利用角平分線的性質(zhì)以及直線與圓的位置關(guān)系進(jìn)而求出即可.【詳解】(1)如圖所示:;(2)相切;過O點(diǎn)作OD⊥AC于D點(diǎn),∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O與直線AC相切,【點(diǎn)睛】此題主要考查了復(fù)雜作圖以及角平分線的性質(zhì)與作法和直線與圓的位置關(guān)系,正確利用角平分線的性質(zhì)求出d=r是解題關(guān)鍵.23、(1)AB=2;相等;(2)a=±;(3),.【解析】
(1)①過點(diǎn)B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,設(shè)出點(diǎn)B的坐標(biāo)為(n,-n),根據(jù)二次函數(shù)得出n的值,然后得出AB的值,②因?yàn)閽佄锞€y=x2+1與y=x2的形狀相同,所以拋物線y=x2+1與y=x2的“完美三角形”的斜邊長(zhǎng)的數(shù)量關(guān)系是相等;(2)根據(jù)拋物線的性質(zhì)相同得出拋物線的完美三角形全等,從而得出點(diǎn)B的坐標(biāo),得出a的值;根據(jù)最大值得出mn-4m-1=0,根據(jù)拋物線的完美三角形的斜邊長(zhǎng)為n得出點(diǎn)B的坐標(biāo),然后代入拋物線求出m和n的值.(3)根據(jù)的最大值為-1,得到化簡(jiǎn)得mn-4m-1=0,拋物線的“完美三角形”斜邊長(zhǎng)為n,所以拋物線2的“完美三角形”斜邊長(zhǎng)為n,得出B點(diǎn)坐標(biāo),代入可得mn關(guān)系式,即可求出m、n的值.【詳解】(1)①過點(diǎn)B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,AB∥x軸,易證MN=BN,設(shè)B點(diǎn)坐標(biāo)為(n,-n),代入拋物線,得,∴,(舍去),∴拋物線的“完美三角形”的斜邊②相等;(2)∵拋物線與拋物線的形狀相同,∴拋物線與拋物線的“完美三角形”全等,∵拋物線的“完美三角形”斜邊的長(zhǎng)為4,∴拋物線的“完美三角形”斜邊的長(zhǎng)為4,∴B點(diǎn)坐標(biāo)為(2,2)或(2,-2),∴.(3)∵的最大值為-1,∴,∴,∵拋物線的“完美三角形”斜邊長(zhǎng)為n,∴拋物線的“完美三角形”斜邊長(zhǎng)為n,∴B點(diǎn)坐標(biāo)為,∴代入拋物線,得,∴(不合題意舍去),∴,∴24、(1)該校對(duì)50名學(xué)生進(jìn)行了抽樣調(diào)查;(2)最喜歡足球活動(dòng)的人占被調(diào)查人數(shù)的20%;(3)全校學(xué)生中最喜歡籃球活動(dòng)的人數(shù)約為720人.【解析】
(1)根據(jù)條形統(tǒng)計(jì)圖,求個(gè)部分?jǐn)?shù)量的和即可;(2)根據(jù)部分除以總體求得百分比;(3)根據(jù)扇形統(tǒng)計(jì)圖中各部分占總體的百分比之和為1,求出百分比即可求解.【詳解】(1)4+8+10+18+10=50(名)答:該校對(duì)50名學(xué)生進(jìn)行了抽樣調(diào)查.(2)最喜歡足球活動(dòng)的有10人,,∴最喜歡足球活動(dòng)的人占被調(diào)查人數(shù)的20%.(3)全校學(xué)生人數(shù):400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)則全校學(xué)生中最喜歡籃球活動(dòng)的人數(shù)約為2000×=720(人).【點(diǎn)睛】此題主要考查了條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚的表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖中各部分占總體的百分比之和為1,直接反應(yīng)部分占全體的百分比的大小.25、,.【解析】試題分析:原式第二項(xiàng)利用除法法則變形,約分后兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算得到最簡(jiǎn)結(jié)果,把已知等式變形后代入計(jì)算即可求出值.試題解析:===,∵a2+2a=9,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高考地理一輪復(fù)習(xí)第十六章區(qū)際聯(lián)系與區(qū)域協(xié)調(diào)發(fā)展第二節(jié)資源跨區(qū)域調(diào)配課件
- 自建房建筑安全合同(2篇)
- 海爾凈水 課件
- 西京學(xué)院《影視廣告》2022-2023學(xué)年第一學(xué)期期末試卷
- 初三(4)班月考動(dòng)員
- 幼兒園小班歌唱活動(dòng)《表情歌》教案
- 第二節(jié)國(guó)民黨政府處在全民的包圍中
- 西華師范大學(xué)《中國(guó)地理》2021-2022學(xué)年第一學(xué)期期末試卷
- 高考地理一輪復(fù)習(xí)第三章地球上的大氣及其運(yùn)動(dòng)第一節(jié)大氣的組成和垂直分層及大氣受熱過程課件
- 西華師范大學(xué)《寫意花鳥畫》2023-2024學(xué)年第一學(xué)期期末試卷
- xx學(xué)校未成年人性教育工作方案
- 廣開(含解析)《形式與政策》你所從事的行業(yè)和工作《決定》中提出怎樣的改革舉措
- 什么是美術(shù)作品 課件-2024-2025學(xué)年高中美術(shù)湘美版(2019)美術(shù)鑒賞
- 2024-2030年組氨酸行業(yè)市場(chǎng)現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 教育信息化教學(xué)資源建設(shè)規(guī)劃
- 職業(yè)衛(wèi)生技術(shù)服務(wù)機(jī)構(gòu)檢測(cè)人員考試真題題庫(kù)
- 上海市交大附中附屬嘉定德富中學(xué)2024-2025學(xué)年九年級(jí)上學(xué)期期中考數(shù)學(xué)卷
- 屠宰場(chǎng)食品安全管理制度
- 部編版(2024秋)語文一年級(jí)上冊(cè) 6 .影子課件
- 2024秋期國(guó)家開放大學(xué)??啤缎淌略V訟法學(xué)》一平臺(tái)在線形考(形考任務(wù)一至五)試題及答案
- 2024年大學(xué)生就業(yè)創(chuàng)業(yè)知識(shí)競(jìng)賽題庫(kù)及答案(共350題)
評(píng)論
0/150
提交評(píng)論