版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省廣州大附屬中學2023-2024學年中考數(shù)學四模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AD,CE分別是△ABC的中線和角平分線.若AB=AC,∠CAD=20°,則∠ACE的度數(shù)是()A.20° B.35° C.40° D.70°2.下列調(diào)查中適宜采用抽樣方式的是()A.了解某班每個學生家庭用電數(shù)量B.調(diào)查你所在學校數(shù)學教師的年齡狀況C.調(diào)查神舟飛船各零件的質(zhì)量D.調(diào)查一批顯像管的使用壽命3.今年“五一”節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間.設他從山腳出發(fā)后所用的時間為t(分鐘),所走的路程為s(米),s與t之間的函數(shù)關(guān)系如圖所示,下列說法錯誤的是()A.小明中途休息用了20分鐘B.小明休息前爬山的平均速度為每分鐘70米C.小明在上述過程中所走的路程為6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度4.如圖,△ABC內(nèi)接于⊙O,AD為⊙O的直徑,交BC于點E,若DE=2,OE=3,則tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.55.如圖,AB是一垂直于水平面的建筑物,某同學從建筑物底端B出發(fā),先沿水平方向向右行走20米到達點C,再經(jīng)過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達點D,然后再沿水平方向向右行走40米到達點E(A,B,C,D,E均在同一平面內(nèi)).在E處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米 B.22.4米 C.27.4米 D.28.8米6.已知m=,n=,則代數(shù)式的值為()A.3 B.3 C.5 D.97.若關(guān)于x的分式方程的解為正數(shù),則滿足條件的正整數(shù)m的值為()A.1,2,3 B.1,2 C.1,3 D.2,38.據(jù)《關(guān)于“十三五”期間全面深入推進教育信息化工作的指導意見》顯示,全國6000萬名師生已通過“網(wǎng)絡學習空間”探索網(wǎng)絡條件下的新型教學、學習與教研模式,教育公共服務平臺基本覆蓋全國學生、教職工等信息基礎(chǔ)數(shù)據(jù)庫,實施全國中小學教師信息技術(shù)應用能力提升工程.則數(shù)字6000萬用科學記數(shù)法表示為()A.6×105 B.6×106 C.6×107 D.6×1089.方程的解是()A. B. C. D.10.如圖,直線a、b被c所截,若a∥b,∠1=45°,∠2=65°,則∠3的度數(shù)為()A.110° B.115° C.120° D.130°二、填空題(本大題共6個小題,每小題3分,共18分)11.“五一勞動節(jié)”,王老師將全班分成六個小組開展社會實踐活動,活動結(jié)束后,隨機抽取一個小組進行匯報展示.第五組被抽到的概率是___.12.如圖,在梯形中,,,點、分別是邊、的中點.設,,那么向量用向量表示是________.13.分解因式:2x3﹣4x2+2x=_____.14.如圖,⊙O的外切正六邊形ABCDEF的邊長為2,則圖中陰影部分的面積為_____.15.將拋物線y=2x2平移,使頂點移動到點P(﹣3,1)的位置,那么平移后所得新拋物線的表達式是_____.16.方程的解是.三、解答題(共8題,共72分)17.(8分)近日,深圳市人民政府發(fā)布了《深圳市可持續(xù)發(fā)展規(guī)劃》,提出了要做可持續(xù)發(fā)展的全球創(chuàng)新城市的目標,某初中學校了解學生的創(chuàng)新意識,組織了全校學生參加創(chuàng)新能力大賽,從中抽取了部分學生成績,分為5組:A組50~60;B組60~70;C組70~80;D組80~90;E組90~100,統(tǒng)計后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖.抽取學生的總?cè)藬?shù)是人,扇形C的圓心角是°;補全頻數(shù)直方圖;該校共有2200名學生,若成績在70分以下(不含70分)的學生創(chuàng)新意識不強,有待進一步培養(yǎng),則該校創(chuàng)新意識不強的學生約有多少人?18.(8分)先化簡,再求值:,其中與2,3構(gòu)成的三邊,且為整數(shù).19.(8分)已知:二次函數(shù)C1:y1=ax2+2ax+a﹣1(a≠0)把二次函數(shù)C1的表達式化成y=a(x﹣h)2+b(a≠0)的形式,并寫出頂點坐標;已知二次函數(shù)C1的圖象經(jīng)過點A(﹣3,1).①求a的值;②點B在二次函數(shù)C1的圖象上,點A,B關(guān)于對稱軸對稱,連接AB.二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個交點,求k的取值范圍.20.(8分)我市某外資企業(yè)生產(chǎn)的一批產(chǎn)品上市后30天內(nèi)全部售完,該企業(yè)對這批產(chǎn)品上市后每天的銷售情況進行了跟蹤調(diào)查.其中,國內(nèi)市場的日銷售量y1(萬件)與時間t(t為整數(shù),單位:天)的部分對應值如下表所示.而國外市場的日銷售量y2(萬件)與時間t(t為整數(shù),單位:天)的關(guān)系如圖所示.(1)請你從所學過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與t的變化規(guī)律,寫出y1與t的函數(shù)關(guān)系式及自變量t的取值范圍;(2)分別探求該產(chǎn)品在國外市場上市20天前(不含第20天)與20天后(含第20天)的日銷售量y2與時間t所符合的函數(shù)關(guān)系式,并寫出相應自變量t的取值范圍;(3)設國內(nèi)、外市場的日銷售總量為y萬件,寫出y與時間t的函數(shù)關(guān)系式,并判斷上市第幾天國內(nèi)、外市場的日銷售總量y最大,并求出此時的最大值.21.(8分)為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設計圖,其中MN是水平線,MN∥AD,AD⊥DE,CF⊥AB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點C在DE上,CD=0.5米,CD是限高標志牌的高度(標志牌上寫有:限高米).如果進入該車庫車輛的高度不能超過線段CF的長,則該停車庫限高多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)22.(10分)實踐體驗:(1)如圖1:四邊形ABCD是矩形,試在AD邊上找一點P,使△BCP為等腰三角形;(2)如圖2:矩形ABCD中,AB=13,AD=12,點E在AB邊上,BE=3,點P是矩形ABCD內(nèi)或邊上一點,且PE=5,點Q是CD邊上一點,求PQ得最值;問題解決:(3)如圖3,四邊形ABCD中,AD∥BC,∠C=90°,AD=3,BC=6,DC=4,點E在AB邊上,BE=2,點P是四邊形ABCD內(nèi)或邊上一點,且PE=2,求四邊形PADC面積的最值.23.(12分)八年級(1)班學生在完成課題學習“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓練,訓練后都進行了測試.現(xiàn)將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.請你根據(jù)上面提供的信息回答下列問題:扇形圖中跳繩部分的扇形圓心角為度,該班共有學生人,訓練后籃球定時定點投籃平均每個人的進球數(shù)是.老師決定從選擇鉛球訓練的3名男生和1名女生中任選兩名學生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.24.如圖,在城市改造中,市政府欲在一條人工河上架一座橋,河的兩岸PQ與MN平行,河岸MN上有A、B兩個相距50米的涼亭,小亮在河對岸D處測得∠ADP=60°,然后沿河岸走了110米到達C處,測得∠BCP=30°,求這條河的寬.(結(jié)果保留根號)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
先根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分線定義即可得出∠ACE=∠ACB=35°.【詳解】∵AD是△ABC的中線,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分線,∴∠ACE=∠ACB=35°.故選B.【點睛】本題考查了等腰三角形的兩個底角相等的性質(zhì),等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合的性質(zhì),三角形內(nèi)角和定理以及角平分線定義,求出∠ACB=70°是解題的關(guān)鍵.2、D【解析】
根據(jù)全面調(diào)查與抽樣調(diào)查的特點對各選項進行判斷.【詳解】解:了解某班每個學生家庭用電數(shù)量可采用全面調(diào)查;調(diào)查你所在學校數(shù)學教師的年齡狀況可采用全面調(diào)查;調(diào)查神舟飛船各零件的質(zhì)量要采用全面調(diào)查;而調(diào)查一批顯像管的使用壽命要采用抽樣調(diào)查.故選:D.【點睛】本題考查了全面調(diào)查與抽樣調(diào)查:全面調(diào)查與抽樣調(diào)查的優(yōu)缺點:全面調(diào)查收集的到數(shù)據(jù)全面、準確,但一般花費多、耗時長,而且某些調(diào)查不宜用全面調(diào)查.抽樣調(diào)查具有花費少、省時的特點,但抽取的樣本是否具有代表性,直接關(guān)系到對總體估計的準確程度.3、C【解析】
根據(jù)圖像,結(jié)合行程問題的數(shù)量關(guān)系逐項分析可得出答案.【詳解】從圖象來看,小明在第40分鐘時開始休息,第60分鐘時結(jié)束休息,故休息用了20分鐘,A正確;小明休息前爬山的平均速度為:(米/分),B正確;小明在上述過程中所走的路程為3800米,C錯誤;小明休息前爬山的平均速度為:70米/分,大于休息后爬山的平均速度:米/分,D正確.故選C.考點:函數(shù)的圖象、行程問題.4、C【解析】
如圖(見解析),連接BD、CD,根據(jù)圓周角定理可得,再根據(jù)相似三角形的判定定理可得,然后由相似三角形的性質(zhì)可得,同理可得;又根據(jù)圓周角定理可得,再根據(jù)正切的定義可得,然后求兩個正切值之積即可得出答案.【詳解】如圖,連接BD、CD在和中,同理可得:,即為⊙O的直徑故選:C.【點睛】本題考查了圓周角定理、相似三角形的判定定理與性質(zhì)、正切函數(shù)值等知識點,通過作輔助線,結(jié)合圓周角定理得出相似三角形是解題關(guān)鍵.5、A【解析】
作BM⊥ED交ED的延長線于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根據(jù)tan24°=,構(gòu)建方程即可解決問題.【詳解】作BM⊥ED交ED的延長線于M,CN⊥DM于N.在Rt△CDN中,∵,設CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四邊形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故選A.【點睛】本題考查的是解直角三角形的應用-仰角俯角問題,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.6、B【解析】
由已知可得:,=.【詳解】由已知可得:,原式=故選:B【點睛】考核知識點:二次根式運算.配方是關(guān)鍵.7、C【解析】試題分析:解分式方程得:等式的兩邊都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知關(guān)于x的分式方的解為正數(shù),得m=1,m=3,故選C.考點:分式方程的解.8、C【解析】
將一個數(shù)寫成的形式,其中,n是正數(shù),這種記數(shù)的方法叫做科學記數(shù)法,根據(jù)定義解答即可.【詳解】解:6000萬=6×1.故選:C.【點睛】此題考查科學記數(shù)法,當所表示的數(shù)的絕對值大于1時,n為正整數(shù),其值等于原數(shù)中整數(shù)部分的數(shù)位減去1,當要表示的數(shù)的絕對值小于1時,n為負整數(shù),其值等于原數(shù)中第一個非零數(shù)字前面所有零的個數(shù)的相反數(shù),正確掌握科學記數(shù)法中n的值的確定是解題的關(guān)鍵.9、D【解析】
按照解分式方程的步驟進行計算,注意結(jié)果要檢驗.【詳解】解:經(jīng)檢驗x=4是原方程的解故選:D【點睛】本題考查解分式方程,注意結(jié)果要檢驗.10、A【解析】試題分析:首先根據(jù)三角形的外角性質(zhì)得到∠1+∠2=∠4,然后根據(jù)平行線的性質(zhì)得到∠3=∠4求解.解:根據(jù)三角形的外角性質(zhì),∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故選A.點評:本題考查了平行線的性質(zhì)以及三角形的外角性質(zhì),屬于基礎(chǔ)題,難度較?。?、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
根據(jù)概率是所求情況數(shù)與總情況數(shù)之比,可得答案.【詳解】因為共有六個小組,所以第五組被抽到的概率是,故答案為:.【點睛】本題考查了概率的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.12、【解析】分析:根據(jù)梯形的中位線等于上底與下底和的一半表示出EF,然后根據(jù)向量的三角形法則解答即可.詳解:∵點E、F分別是邊AB、CD的中點,∴EF是梯形ABCD的中位線,F(xiàn)C=DC,∴EF=(AD+BC).∵BC=3AD,∴EF=(AD+3AD)=2AD,由三角形法則得,=+=2+===2+.故答案為:2+.點睛:本題考查了平面向量,平面向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關(guān)鍵,本題還考查了梯形的中位線等于上底與下底和的一半.13、2x(x-1)2【解析】2x3﹣4x2+2x=14、【解析】
由于六邊形ABCDEF是正六邊形,所以∠AOB=60°,故△OAB是等邊三角形,OA=OB=AB=2,設點G為AB與⊙O的切點,連接OG,則OG⊥AB,OG=OA?sin60°,再根據(jù)S陰影=S△OAB-S扇形OMN,進而可得出結(jié)論.【詳解】∵六邊形ABCDEF是正六邊形,
∴∠AOB=60°,
∴△OAB是等邊三角形,OA=OB=AB=2,
設點G為AB與⊙O的切點,連接OG,則OG⊥AB,
∴∴S陰影=S△OAB-S扇形OMN=故答案為【點睛】考查不規(guī)則圖形面積的計算,掌握扇形的面積公式是解題的關(guān)鍵.15、y=2(x+3)2+1【解析】
由于拋物線平移前后二次項系數(shù)不變,然后根據(jù)頂點式寫出新拋物線解析式.【詳解】拋物線y=2x2平移,使頂點移到點P(﹣3,1)的位置,所得新拋物線的表達式為y=2(x+3)2+1.故答案為:y=2(x+3)2+1【點睛】本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.16、x=1.【解析】
根據(jù)解分式方程的步驟解答即可.【詳解】去分母得:2x=3x﹣1,解得:x=1,經(jīng)檢驗x=1是分式方程的解,故答案為x=1.【點睛】本題主要考查了解分式方程的步驟,牢牢掌握其步驟就解答此類問題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)300、144;(2)補全頻數(shù)分布直方圖見解析;(3)該校創(chuàng)新意識不強的學生約有528人.【解析】
(1)由D組頻數(shù)及其所占比例可得總?cè)藬?shù),用360°乘以C組人數(shù)所占比例可得;
(2)用總?cè)藬?shù)分別乘以A、B組的百分比求得其人數(shù),再用總?cè)藬?shù)減去A、B、C、D的人數(shù)求得E組的人數(shù)可得;
(3)用總?cè)藬?shù)乘以樣本中A、B組的百分比之和可得.【詳解】解:(1)抽取學生的總?cè)藬?shù)為78÷26%=300人,扇形C的圓心角是360°×=144°,故答案為300、144;(2)A組人數(shù)為300×7%=21人,B組人數(shù)為300×17%=51人,則E組人數(shù)為300﹣(21+51+120+78)=30人,補全頻數(shù)分布直方圖如下:(3)該校創(chuàng)新意識不強的學生約有2200×(7%+17%)=528人.【點睛】考查了頻數(shù)(率)分布直方圖:提高讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.也考查了用樣本估計總體.18、1【解析】試題分析:先進行分式的除法運算,再進行分式的加減法運算,根據(jù)三角形三邊的關(guān)系確定出a的值,然后代入進行計算即可.試題解析:原式=,∵a與2、3構(gòu)成△ABC的三邊,∴3?2<a<3+2,即1<a<5,又∵a為整數(shù),∴a=2或3或4,∵當x=2或3時,原分式無意義,應舍去,∴當a=4時,原式==119、(1)y1=a(x+1)2﹣1,頂點為(﹣1,﹣1);(2)①;②k的取值范圍是≤k≤或k=﹣1.【解析】
(1)化成頂點式即可求得;(2)①把點A(﹣3,1)代入二次函數(shù)C1:y1=ax2+2ax+a﹣1即可求得a的值;②根據(jù)對稱的性質(zhì)得出B的坐標,然后分兩種情況討論即可求得;【詳解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴頂點為(﹣1,﹣1);(2)①∵二次函數(shù)C1的圖象經(jīng)過點A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=;②∵A(﹣3,1),對稱軸為直線x=﹣1,∴B(1,1),當k>0時,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經(jīng)過A(﹣3,1)時,1=9k﹣3k,解得k=,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經(jīng)過B(1,1)時,1=k+k,解得k=,∴≤k≤,當k<0時,∵二次函數(shù)C2:y2=kx2+kx=k(x+)2﹣k,∴﹣k=1,∴k=﹣1,綜上,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個交點,k的取值范圍是≤k≤或k=﹣1.【點睛】本題考查了二次函數(shù)和系數(shù)的關(guān)系,二次函數(shù)的最值問題,軸對稱的性質(zhì)等,分類討論是解題的關(guān)鍵.20、(1)y1=﹣t(t﹣30)(0≤t≤30);(2)∴y2=;(3)上市第20天,國內(nèi)、外市場的日銷售總量y最大,最大值為80萬件.【解析】
(1)根據(jù)題意得出y1與t之間是二次函數(shù)關(guān)系,然后利用待定系數(shù)法求出函數(shù)解析式;(2)利用待定系數(shù)法分別求出兩個函數(shù)解析式,從而得出答案;(3)分0≤t<20、t=20和20≤t≤30三種情況根據(jù)y=y1+y2求出函數(shù)解析式,然后根據(jù)二次函數(shù)的性質(zhì)得出最值,從而得出整體的最值.【詳解】解:(1)由圖表數(shù)據(jù)觀察可知y1與t之間是二次函數(shù)關(guān)系,設y1=a(t﹣0)(t﹣30)再代入t=5,y1=25可得a=﹣∴y1=﹣t(t﹣30)(0≤t≤30)(2)由函數(shù)圖象可知y2與t之間是分段的一次函數(shù)由圖象可知:0≤t<20時,y2=2t,當20≤t≤30時,y2=﹣4t+120,∴y2=,(3)當0≤t<20時,y=y1+y2=﹣t(t﹣30)+2t=80﹣(t﹣20)2,可知拋物線開口向下,t的取值范圍在對稱軸左側(cè),y隨t的增大而增大,所以最大值小于當t=20時的值80,當20≤t≤30時,y=y1+y2=﹣t(t﹣30)﹣4t+120=125﹣(t﹣5)2,可知拋物線開口向下,t的取值范圍在對稱軸右側(cè),y隨t的增大而減小,所以最大值為當t=20時的值80,故上市第20天,國內(nèi)、外市場的日銷售總量y最大,最大值為80萬件.21、2.1.【解析】
據(jù)題意得出tanB=,即可得出tanA,在Rt△ADE中,根據(jù)勾股定理可求得DE,即可得出∠FCE的正切值,再在Rt△CEF中,設EF=x,即可求出x,從而得出CF=1x的長.【詳解】解:據(jù)題意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2設EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面沒有“設x>0”,則此處應“x=±,舍負”),∴CF=1x=≈2.1,∴該停車庫限高2.1米.【點睛】點評:本題考查了解直角三角形的應用,坡面坡角問題和勾股定理,解題的關(guān)鍵是坡度等于坡角的正切值.22、(1)見解析;(2)PQmin=7,PQm
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 防用電課件教學課件
- 2024「銷售代理」合同標的與代理商責任義務
- 2024年度租賃合同標的及租賃期限的詳細約定
- 2024年度供應鏈管理服務合同協(xié)同操作與風險控制
- 2024年建筑工程項目安全協(xié)議
- 2024年度石油化工企業(yè)BIM模型設計與安全評估合同
- 2024年度園林綠化工程施工合同范例
- 2024標準勞務合同書3
- 2024年土地暫時使用協(xié)議
- 2024年度技術(shù)開發(fā)成果共享協(xié)議
- 市場主體遷移申請書
- 2023科室醫(yī)療質(zhì)量、安全管理持續(xù)改進記錄本
- (完整word)大學西門子plcs7-1200考試復習習題
- 中考數(shù)學復習微專題:有理數(shù)運算中的錯解及對策
- DB11-972-2013保險營業(yè)場所風險等級與安全防范要求
- 高中政治部編版教材高考雙向細目表
- 輪扣式模板支撐架安全專項施工方案
- 酒店裝飾裝修工程驗收表
- 中國行業(yè)分類代碼表
- 社會組織協(xié)會換屆選舉會議主持詞
- 呼吸科(呼吸與危重癥醫(yī)學科)出科理論試題及答案
評論
0/150
提交評論