2024屆江蘇省南京市建鄴三校聯合~中考數學適應性模擬試題含解析_第1頁
2024屆江蘇省南京市建鄴三校聯合~中考數學適應性模擬試題含解析_第2頁
2024屆江蘇省南京市建鄴三校聯合~中考數學適應性模擬試題含解析_第3頁
2024屆江蘇省南京市建鄴三校聯合~中考數學適應性模擬試題含解析_第4頁
2024屆江蘇省南京市建鄴三校聯合~中考數學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省南京市建鄴三校聯合~中考數學適應性模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.我市連續(xù)7天的最高氣溫為:28°,27°,30°,33°,30°,30°,32°,這組數據的平均數和眾數分別是()A.28°,30° B.30°,28° C.31°,30° D.30°,30°2.如圖,是反比例函數圖象,陰影部分表示它與橫縱坐標軸正半軸圍成的區(qū)域,在該區(qū)域內不包括邊界的整數點個數是k,則拋物線向上平移k個單位后形成的圖象是A. B.C. D.3.一組數據是4,x,5,10,11共五個數,其平均數為7,則這組數據的眾數是()A.4 B.5 C.10 D.114.的絕對值是()A.﹣4 B. C.4 D.0.45.如圖,已知AB、CD、EF都與BD垂直,垂足分別是B、D、F,且AB=1,CD=3,那么EF的長是()A. B. C. D.6.如圖所示,數軸上兩點A,B分別表示實數a,b,則下列四個數中最大的一個數是(

)A.a

B.b

C. D.7.一個空間幾何體的主視圖和左視圖都是邊長為2的正方形,俯視圖是一個圓,那么這個幾何體的表面積是()A.6πB.4πC.8πD.48.如圖1是一座立交橋的示意圖(道路寬度忽略不計),A為人口,F,G為出口,其中直行道為AB,CG,EF,且AB=CG=EF;彎道為以點O為圓心的一段弧,且,,所對的圓心角均為90°.甲、乙兩車由A口同時駛入立交橋,均以10m/s的速度行駛,從不同出口駛出,其間兩車到點O的距離y(m)與時間x(s)的對應關系如圖2所示.結合題目信息,下列說法錯誤的是()A.甲車在立交橋上共行駛8s B.從F口出比從G口出多行駛40m C.甲車從F口出,乙車從G口出 D.立交橋總長為150m9.如圖,在△ABC中,∠CAB=75°,在同一平面內,將△ABC繞點A逆時針旋轉到△AB′C′的位置,使得CC′∥AB,則∠CAC′為()A.30° B.35° C.40° D.50°10.我國古代數學名著《孫子算經》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設大馬有x匹,小馬有y匹,那么可列方程組為()A. B. C. D.11.如圖,正方形ABCD的邊長為2cm,動點P從點A出發(fā),在正方形的邊上沿A→B→C的方向運動到點C停止,設點P的運動路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關于x(cm)的函數關系的圖象是()A. B. C. D.12.在平面直角坐標系xOy中,二次函數y=ax2+bx+c(a≠0)的大致圖象如圖所示,則下列結論正確的是()A.a<0,b<0,c>0B.﹣=1C.a+b+c<0D.關于x的方程ax2+bx+c=﹣1有兩個不相等的實數根二、填空題:(本大題共6個小題,每小題4分,共24分.)13.半徑為2的圓中,60°的圓心角所對的弧的弧長為_____.14.如圖,在△ABC中,∠C=90°,AC=BC=2,將△ABC繞點A順時針方向旋轉60°到△AB′C′的位置,連接C′B,則C′B=______15.如圖,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.16.如圖,在2×4的正方形網格中,每個小正方形的邊長均為1,每個小正方形的頂點叫做格點,△ABC的頂點都在格點上,將△ABC繞著點C按順時針方向旋轉一定角度后,得到△A'B'C',點A'、B'在格點上,則點A走過的路徑長為_____(結果保留π)17.反比例函數y=的圖象是雙曲線,在每一個象限內,y隨x的增大而減小,若點A(–3,y1),B(–1,y2),C(2,y3)都在該雙曲線上,則y1、y2、y3的大小關系為__________.(用“<”連接)18.如圖,一艘船向正北航行,在A處看到燈塔S在船的北偏東30°的方向上,航行12海里到達B點,在B處看到燈塔S在船的北偏東60°的方向上,此船繼續(xù)沿正北方向航行過程中距燈塔S的最近距離是_____海里(不近似計算).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“低碳生活,綠色出行”是我們倡導的一種生活方式,有關部門抽樣調查了某單位員工上下班的交通方式,繪制了兩幅統(tǒng)計圖:(1)樣本中的總人數為人;扇形統(tǒng)計十圖中“騎自行車”所在扇形的圓心角為度;(2)補全條形統(tǒng)計圖;(3)該單位共有1000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數不低于開私家車的人數?20.(6分)在“雙十一”購物街中,某兒童品牌玩具專賣店購進了兩種玩具,其中類玩具的金價比玩具的進價每個多元.經調查發(fā)現:用元購進類玩具的數量與用元購進類玩具的數量相同.求的進價分別是每個多少元?該玩具店共購進了兩類玩具共個,若玩具店將每個類玩具定價為元出售,每個類玩具定價元出售,且全部售出后所獲得的利潤不少于元,則該淘寶專賣店至少購進類玩具多少個?21.(6分)當x取哪些整數值時,不等式與4﹣7x<﹣3都成立?22.(8分)如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F是AE與⊙O的交點,AC平分∠BAE.求證:DE是⊙O的切線;若AE=6,∠D=30°,求圖中陰影部分的面積.23.(8分)如今,旅游度假成為了中國人慶祝傳統(tǒng)春節(jié)的一項的“新年俗”,山西省旅發(fā)委發(fā)布的《2018年“春節(jié)”假日旅游市場總結分析報告》中稱:山西春節(jié)旅游供需兩旺,實現了“旅游接待”與“經濟效益”的雙豐收,請根據圖表信息解決問題:(1)如圖1所示,山西近五年春節(jié)假日接待海內外游客的數量逐年增加,2018年首次突破了“千萬”大關,達到萬人次,比2017年春節(jié)假日增加萬人次.(2)2018年2月15日﹣20日期間,山西省35個重點景區(qū)每日接待游客數量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客數量(萬人次)7.5682.83119.5184.38103.2151.55這組數據的中位數是萬人次.(3)根據圖2中的信息預估:2019年春節(jié)假日山西旅游總收入比2018年同期增長的百分率約為,理由是.(4)春節(jié)期間,小明在“青龍古鎮(zhèn)第一屆新春廟會”上購買了A,B,C,D四枚書簽(除圖案外完全相同).正面分別印有“剪紙藝術”、“國粹京劇”、“陶瓷藝術”、“皮影戲”的圖案(如圖3),他將書簽背面朝上放在桌面上,從中隨機挑選兩枚送給好朋友,求送給好朋友的兩枚書簽中恰好有“剪紙藝術”的概率.24.(10分)如圖,在四邊形ABCD中,∠A=∠BCD=90°,,CE⊥AD于點E.(1)求證:AE=CE;(2)若tanD=3,求AB的長.25.(10分)如圖,已知一次函數y=kx+b的圖象與反比例函數y=8(1)求一次函數的解析式;(2)求ΔAOB的面積。26.(12分)如圖,在平面直角坐標系中,一次函數y=﹣12x+3的圖象與反比例函數y=kx(x>0,k是常數)的圖象交于A(a,2),B(4,b)兩點.求反比例函數的表達式;點C是第一象限內一點,連接AC,BC,使AC∥x軸,BC∥y軸,連接OA,OB.若點P在y軸上,且△OPA的面積與四邊形OACB的面積相等,求點27.(12分)在同一時刻兩根木竿在太陽光下的影子如圖所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墻上的影子MN=1.1m,求木竿PQ的長度.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題分析:數據28°,27°,30°,33°,30°,30°,32°的平均數是(28+27+30+33+30+30+32)÷7=30,30出現了3次,出現的次數最多,則眾數是30;故選D.考點:眾數;算術平均數.2、A【解析】

依據反比例函數的圖象與性質,即可得到整數點個數是5個,進而得到拋物線向上平移5個單位后形成的圖象.【詳解】解:如圖,反比例函數圖象與坐標軸圍成的區(qū)域內不包括邊界的整數點個數是5個,即,

拋物線向上平移5個單位后可得:,即,

形成的圖象是A選項.

故選A.【點睛】本題考查反比例函數圖象上點的坐標特征、反比例函數的圖象、二次函數的性質與圖象,解答本題的關鍵是明確題意,求出相應的k的值,利用二次函數圖象的平移規(guī)律進行解答.3、B【解析】試題分析:(4+x+3+30+33)÷3=7,解得:x=3,根據眾數的定義可得這組數據的眾數是3.故選B.考點:3.眾數;3.算術平均數.4、B【解析】分析:根據絕對值的性質,一個負數的絕對值等于其相反數,可有相反數的意義求解.詳解:因為-的相反數為所以-的絕對值為.故選:B點睛:此題主要考查了求一個數的絕對值,關鍵是明確絕對值的性質,一個正數的絕對值等于本身,0的絕對值是0,一個負數的絕對值為其相反數.5、C【解析】

易證△DEF∽△DAB,△BEF∽△BCD,根據相似三角形的性質可得=,=,從而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【詳解】∵AB、CD、EF都與BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故選C.【點睛】本題考查了相似三角形的判定及性質定理,熟練掌握性質定理是解題的關鍵.6、D【解析】

∵負數小于正數,在(0,1)上的實數的倒數比實數本身大.∴<a<b<,故選D.7、A【解析】根據題意,可判斷出該幾何體為圓柱.且已知底面半徑以及高,易求表面積.解答:解:根據題目的描述,可以判斷出這個幾何體應該是個圓柱,且它的底面圓的半徑為1,高為2,那么它的表面積=2π×2+π×1×1×2=6π,故選A.8、C【解析】分析:結合2個圖象分析即可.詳解:A.根據圖2甲的圖象可知甲車在立交橋上共行駛時間為:,故正確.B.3段弧的長度都是:從F口出比從G口出多行駛40m,正確.C.分析圖2可知甲車從G口出,乙車從F口出,故錯誤.D.立交橋總長為:故正確.故選C.點睛:考查圖象問題,觀察圖象,讀懂圖象是解題的關鍵.9、A【解析】

根據旋轉的性質可得AC=AC,∠BAC=∠BAC',再根據兩直線平行,內錯角相等求出∠ACC=∠CAB,然后利用等腰三角形兩底角相等求出∠CAC,再求出∠BAB=∠CAC,從而得解【詳解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′為對應點,點A為旋轉中心,∴AC=AC′,即△ACC′為等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故選A.【點睛】此題考查等腰三角形的性質,旋轉的性質和平行線的性質,運用好旋轉的性質是解題關鍵10、C【解析】

設大馬有x匹,小馬有y匹,根據題意可得等量關系:①大馬數+小馬數=100;②大馬拉瓦數+小馬拉瓦數=100,根據等量關系列出方程組即可.【詳解】解:設大馬有x匹,小馬有y匹,由題意得:,故選C.【點睛】此題主要考查了由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系,列出方程組.11、B【解析】

△ADP的面積可分為兩部分討論,由A運動到B時,面積逐漸增大,由B運動到C時,面積不變,從而得出函數關系的圖象.【詳解】解:當P點由A運動到B點時,即0≤x≤2時,y=×2x=x,當P點由B運動到C點時,即2<x<4時,y=×2×2=2,符合題意的函數關系的圖象是B;故選B.【點睛】本題考查了動點函數圖象問題,用到的知識點是三角形的面積、一次函數,在圖象中應注意自變量的取值范圍.12、D【解析】試題分析:根據圖像可得:a<0,b>0,c<0,則A錯誤;,則B錯誤;當x=1時,y=0,即a+b+c=0,則C錯誤;當y=-1時有兩個交點,即有兩個不相等的實數根,則正確,故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】根據弧長公式可得:=,故答案為.14、3【解析】如圖,連接BB′,∵△ABC繞點A順時針方向旋轉60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等邊三角形,∴AB=BB′,在△ABC′和△B′BC′中,AB=BB'AC'=B'C'∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延長BC′交AB′于D,則BD⊥AB′,∵∠C=90°,AC=BC=2,∴AB=(2∴BD=2×32=3C′D=12∴BC′=BD?C′D=3?1.故答案為:3?1.點睛:本題考查了旋轉的性質,全等三角形的判定與性質,等邊三角形的判定與性質,等腰直角三角形的性質,作輔助線構造出全等三角形并求出BC′在等邊三角形的高上是解題的關鍵,也是本題的難點.15、1.【解析】

由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行線分線段成比例定理,即可求得答案.【詳解】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=1.故答案為:1.【點睛】此題考查了平行線分線段成比例定理以及等腰三角形的判定與性質.注意掌握線段的對應關系是解此題的關鍵.16、【解析】分析:連接AA′,根據勾股定理求出AC=AC′,及AA′的長,然后根據勾股定理的逆定理得出△ACA′為等腰直角三角形,然后根據弧長公式求解即可.詳解:連接AA′,如圖所示.∵AC=A′C=,AA′=,∴AC2+A′C2=AA′2,∴△ACA′為等腰直角三角形,∴∠ACA′=90°,∴點A走過的路徑長=×2πAC=π.故答案為:π.點睛:本題主要考查了幾何變換的類型以及勾股定理及逆定理的運用,弧長公式,解題時注意:在旋轉變換下,對應線段相等.解決問題的關鍵是找出變換的規(guī)律,根據弧長公式求解.17、y2<y1<y1.【解析】

先根據反比例函數的增減性判斷出2-m的符號,再根據反比例函數的性質判斷出此函數圖象所在的象限,由各點橫坐標的值進行判斷即可.【詳解】∵反比例函數y=的圖象是雙曲線,在每一個象限內,y隨x的增大而減小,∴2?m>0,∴此函數的圖象在一、三象限,∵?1<?1<0,∴0>y1>y2,∵2>0,∴y1>0,∴y2<y1<y1.故答案為y2<y1<y1.【點睛】本題考查的知識點是反比例函數圖像上點的坐標特征,解題的關鍵是熟練的掌握列反比例函數圖像上點的坐標特征.18、6【解析】試題分析:過S作AB的垂線,設垂足為C.根據三角形外角的性質,易證SB=AB.在Rt△BSC中,運用正弦函數求出SC的長.解:過S作SC⊥AB于C.∵∠SBC=60°,∠A=30°,∴∠BSA=∠SBC﹣∠A=30°,即∠BSA=∠A=30°.∴SB=AB=1.Rt△BCS中,BS=1,∠SBC=60°,∴SC=SB?sin60°=1×=6(海里).即船繼續(xù)沿正北方向航行過程中距燈塔S的最近距離是6海里.故答案為:6.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)80、72;(2)16人;(3)50人【解析】

(1)用步行人數除以其所占的百分比即可得到樣本總人數:810%=80(人);用總人數乘以開私家車的所占百分比即可求出m,即m=8025%=20;用3600乘以騎自行車所占的百分比即可求出其所在扇形的圓心角:360(1-10%-25%-45%)=.(2)根據扇形統(tǒng)計圖算出騎自行車的所占百分比,再用總人數乘以該百分比即可求出騎自行車的人數,補全條形圖即可.(3)依題意設原來開私家車的人中有x人改為騎自行車,用x分別表示改變出行方式后的騎自行車和開私家車的人數,根據題意列出一元一次不等式,解不等式即可.【詳解】解:(1)樣本中的總人數為8÷10%=80人,∵騎自行車的百分比為1﹣(10%+25%+45%)=20%,∴扇形統(tǒng)計十圖中“騎自行車”所在扇形的圓心角為360°×20%=72°(2)騎自行車的人數為80×20%=16人,補全圖形如下:(3)設原來開私家車的人中有x人改騎自行車,由題意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,解得:x≥50,∴原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數不低于開私家車的人數.【點睛】本題主要考查統(tǒng)計圖表和一元一次不等式的應用。20、(1)的進價是元,的進價是元;(2)至少購進類玩具個.【解析】

(1)設的進價為元,則的進價為元,根據用元購進類玩具的數量與用元購進類玩具的數量相同這個等量關系列出方程即可;(2)設玩具個,則玩具個,結合“玩具點將每個類玩具定價為元出售,每個類玩具定價元出售,且全部售出后所獲得利潤不少于元”列出不等式并解答.【詳解】解:(1)設的進價為元,則的進價為元由題意得,解得,經檢驗是原方程的解.所以(元)答:的進價是元,的進價是元;(2)設玩具個,則玩具個由題意得:解得.答:至少購進類玩具個.【點睛】本題考查了分式方程的應用和一元一次不等式的應用.解決本題的關鍵是讀懂題意,找到符合題意的數量關系,準確的解分式方程或不等式是需要掌握的基本計算能力.21、2,1【解析】

根據題意得出不等式組,解不等式組求得其解集即可.【詳解】根據題意得,解不等式①,得:x≤1,解不等式②,得:x>1,則不等式組的解集為1<x≤1,∴x可取的整數值是2,1.【點睛】本題考查了解不等式組的能力,根據題意得出不等式組是解題的關鍵.22、(1)證明見解析;(2)陰影部分的面積為.【解析】

(1)連接OC,先證明∠OAC=∠OCA,進而得到OC∥AE,于是得到OC⊥CD,進而證明DE是⊙O的切線;(2)分別求出△OCD的面積和扇形OBC的面積,利用S陰影=S△COD﹣S扇形OBC即可得到答案.【詳解】解:(1)連接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵點C在圓O上,OC為圓O的半徑,∴CD是圓O的切線;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=∴S△OCD==8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S陰影=S△COD﹣S扇形OBC∴S陰影=8﹣,∴陰影部分的面積為8﹣.23、(1)1365.45、414.4(2)93.79(3)30%;近3年平均漲幅在30%左右,估計2019年比2018年同比增長約30%(4)【解析】

(1)由圖1可得答案;(2)根據中位數的定義求解可得;(3)由近3年平均漲幅在30%左右即可做出估計;(4)根據題意先畫出樹狀圖,得出共有12種等可能的結果數,再利用概率公式求解可得.【詳解】(1)2018年首次突破了“千萬”大關,達到1365.45萬人次,比2017年春節(jié)假日增加1365.45﹣951.05=414.4萬人次.故答案為:1365.45、414.4;(2)這組數據的中位數是=93.79萬人次,故答案為:93.79;(3)2019年春節(jié)假日山西旅游總收入比2018年同期增長的百分率約為30%,理由是:近3年平均漲幅在30%左右,估計2019年比2018年同比增長約30%,故答案為:30%;近3年平均漲幅在30%左右,估計2019年比2018年同比增長約30%.(4)畫樹狀圖如下:則共有12種等可能的結果數,其中送給好朋友的兩枚書簽中恰好有“剪紙藝術”的結果數為6,所以送給好朋友的兩枚書簽中恰好有“剪紙藝術”的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,求出概率,也考查了條形統(tǒng)計圖與樣本估計總體.24、(1)見解析;(2)AB=4【解析】

(1)過點B作BF⊥CE于F,根據同角的余角相等求出∠BCF=∠D,再利用“角角邊”證明△BCF和△CDE全等,根據全等三角形對應邊相等可得BF=CE,再證明四邊形AEFB是矩形,根據矩形的對邊相等可得AE=BF,從而得證;(2)由(1)可知:CF=DE,四邊形AEFB是矩形,從而求得AB=EF,利用銳角三角函數的定義得出DE和CE的長,即可求得AB的長.【詳解】(1)證明:過點B作BH⊥CE于H,如圖1.∵CE⊥AD,∴∠BHC=∠CED=90°,∠1+∠D=90°.∵∠BCD=90°,∴∠1+∠2=90°,∴∠2=∠D.又BC=CD∴△BHC≌△CED(AAS).∴BH=CE.∵BH⊥CE,CE⊥AD,∠A=90°,∴四邊形ABHE是矩形,∴AE=BH.∴AE=CE.(2)∵四邊形ABHE是矩形,∴AB=HE.∵在Rt△CED中,,設DE=x,CE=3x,∴.∴x=2.∴DE=2,CE=3.∵CH=DE=2.∴AB=HE=3-2=4.【點睛】本題考查了全等三角形的判定與性質,矩形的判定與性質,銳角三角函數的定義,難度中等,作輔助線構造出全等三角形與矩形是解題的關鍵.25、(1)y=x+2;(2)6.【解析】

(1)由反比例函數解析式根據點A的橫坐標是2,點B的縱坐標是-2可以求得點A、點B的坐標,然后根據待定系數法即可求得一次函數的解析式;(2)令直線A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論