山東省淄博張店區(qū)四校聯(lián)考2024屆中考數(shù)學(xué)模擬試卷含解析_第1頁
山東省淄博張店區(qū)四校聯(lián)考2024屆中考數(shù)學(xué)模擬試卷含解析_第2頁
山東省淄博張店區(qū)四校聯(lián)考2024屆中考數(shù)學(xué)模擬試卷含解析_第3頁
山東省淄博張店區(qū)四校聯(lián)考2024屆中考數(shù)學(xué)模擬試卷含解析_第4頁
山東省淄博張店區(qū)四校聯(lián)考2024屆中考數(shù)學(xué)模擬試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山東省淄博張店區(qū)四校聯(lián)考2024屆中考數(shù)學(xué)模擬精編試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.某城年底已有綠化面積公頃,經(jīng)過兩年綠化,到年底增加到公頃,設(shè)綠化面積平均每年的增長率為,由題意所列方程正確的是().A. B. C. D.2.下列運(yùn)算正確的是()A.6-3=3B.-32=﹣3C.a(chǎn)?a2=a2D.(2a3.如圖所示,如果將一副三角板按如圖方式疊放,那么∠1等于()A. B. C. D.4.如圖,將邊長為3a的正方形沿虛線剪成兩塊正方形和兩塊長方形.若拿掉邊長2b的小正方形后,再將剩下的三塊拼成一塊矩形,則這塊矩形較長的邊長為()A.3a+2b B.3a+4b C.6a+2b D.6a+4b5.下列計(jì)算或化簡正確的是()A. B.C. D.6.許昌市2017年國內(nèi)生產(chǎn)總值完成1915.5億元,同比增長9.3%,增速居全省第一位,用科學(xué)記數(shù)法表示1915.5億應(yīng)為()A.1915.15×108 B.19.155×1010C.1.9155×1011 D.1.9155×10127.不等式組的解集在數(shù)軸上表示正確的是()A. B.C. D.8.對于兩組數(shù)據(jù)A,B,如果sA2>sB2,且,則()A.這兩組數(shù)據(jù)的波動相同 B.?dāng)?shù)據(jù)B的波動小一些C.它們的平均水平不相同 D.?dāng)?shù)據(jù)A的波動小一些9.4的平方根是()A.2 B.±2 C.8 D.±810.下列說法中正確的是()A.檢測一批燈泡的使用壽命適宜用普查.B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就一定有5次正面朝上.C.“367人中有兩人是同月同日生”為必然事件.D.“多邊形內(nèi)角和與外角和相等”是不可能事件.11.如圖,3個(gè)形狀大小完全相同的菱形組成網(wǎng)格,菱形的頂點(diǎn)稱為格點(diǎn).已知菱形的一個(gè)角為60°,A、B、C都在格點(diǎn)上,點(diǎn)D在過A、B、C三點(diǎn)的圓弧上,若也在格點(diǎn)上,且∠AED=∠ACD,則∠AEC度數(shù)為()A.75° B.60° C.45° D.30°12.下列運(yùn)算正確的是()A.=x5 B. C.·= D.3+2二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.用配方法將方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n為常數(shù)),則m+n=_____.14.如圖,長方體的底面邊長分別為1cm和3cm,高為6cm.如果用一根細(xì)線從點(diǎn)A開始經(jīng)過4個(gè)側(cè)面纏繞一圈到達(dá)點(diǎn)B,那么所用細(xì)線最短需要_____cm.15.的算術(shù)平方根是_____.16.已知△ABC中,AB=6,AC=BC=5,將△ABC折疊,使點(diǎn)A落在BC邊上的點(diǎn)D處,折痕為EF(點(diǎn)E.F分別在邊AB、AC上).當(dāng)以B.E.D為頂點(diǎn)的三角形與△DEF相似時(shí),BE的長為_____.17.某種商品兩次降價(jià)后,每件售價(jià)從原來100元降到81元,平均每次降價(jià)的百分率是__________.18.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正確的是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,反比例函數(shù)(x>0)的圖象經(jīng)過點(diǎn)A(,1),射線AB與反比例函數(shù)圖象交于另一點(diǎn)B(1,a),射線AC與y軸交于點(diǎn)C,∠BAC=75°,AD⊥y軸,垂足為D.(1)求k的值;(2)求tan∠DAC的值及直線AC的解析式;(3)如圖2,M是線段AC上方反比例函數(shù)圖象上一動點(diǎn),過M作直線l⊥x軸,與AC相交于點(diǎn)N,連接CM,求△CMN面積的最大值.20.(6分)規(guī)定:不相交的兩個(gè)函數(shù)圖象在豎直方向上的最短距離為這兩個(gè)函數(shù)的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點(diǎn)向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點(diǎn)與交點(diǎn)之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.21.(6分)如圖,在矩形ABCD中,AD=4,點(diǎn)E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當(dāng)AE為何值時(shí),△AEF的面積最大?22.(8分)拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.求此拋物線的解析式;已知點(diǎn)D在第四象限的拋物線上,求點(diǎn)D關(guān)于直線BC對稱的點(diǎn)D’的坐標(biāo);在(2)的條件下,連結(jié)BD,問在x軸上是否存在點(diǎn)P,使,若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.23.(8分)如圖,在平行四邊形中,的平分線與邊相交于點(diǎn).(1)求證;(2)若點(diǎn)與點(diǎn)重合,請直接寫出四邊形是哪種特殊的平行四邊形.24.(10分)如圖,將矩形OABC放在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,B(8,6),點(diǎn)D是射線AO上的一點(diǎn),把△BAD沿直線BD折疊,點(diǎn)A的對應(yīng)點(diǎn)為A′.(1)若點(diǎn)A′落在矩形的對角線OB上時(shí),OA′的長=;(2)若點(diǎn)A′落在邊AB的垂直平分線上時(shí),求點(diǎn)D的坐標(biāo);(3)若點(diǎn)A′落在邊AO的垂直平分線上時(shí),求點(diǎn)D的坐標(biāo)(直接寫出結(jié)果即可).25.(10分)定義:任意兩個(gè)數(shù)a,b,按規(guī)則c=b2+ab﹣a+7擴(kuò)充得到一個(gè)新數(shù)c,稱所得的新數(shù)c為“如意數(shù)”.若a=2,b=﹣1,直接寫出a,b的“如意數(shù)”c;如果a=3+m,b=m﹣2,試說明“如意數(shù)”c為非負(fù)數(shù).26.(12分)解不等式組請結(jié)合題意填空,完成本題的解答.(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式①和②的解集在數(shù)軸上表示出來:(IV)原不等式組的解集為.27.(12分)已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).畫出△ABC向下平移4個(gè)單位長度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是;以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是;△A2B2C2的面積是平方單位.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

先用含有x的式子表示2015年的綠化面積,進(jìn)而用含有x的式子表示2016年的綠化面積,根據(jù)等式關(guān)系列方程即可.【詳解】由題意得,綠化面積平均每年的增長率為x,則2015年的綠化面積為300(1+x),2016年的綠化面積為300(1+x)(1+x),經(jīng)過兩年的增長,綠化面積由300公頃變?yōu)?63公頃.可列出方程:300(1+x)2=363.故選B.【點(diǎn)睛】本題主要考查一元二次方程的應(yīng)用,找準(zhǔn)其中的等式關(guān)系式解答此題的關(guān)鍵.2、D【解析】試題解析:A.6與3不是同類二次根式,不能合并,故該選項(xiàng)錯誤;B.(-3)2C.a?aD.(2a故選D.3、B【解析】解:如圖,∠2=90°﹣45°=45°,由三角形的外角性質(zhì)得,∠1=∠2+60°=45°+60°=105°.故選B.點(diǎn)睛:本題考查了三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.4、A【解析】

根據(jù)這塊矩形較長的邊長=邊長為3a的正方形的邊長-邊長為2b的小正方形的邊長+邊長為2b的小正方形的邊長的2倍代入數(shù)據(jù)即可.【詳解】依題意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故這塊矩形較長的邊長為3a+2b.故選A.【點(diǎn)睛】本題主要考查矩形、正方形和整式的運(yùn)算,熟讀題目,理解題意,清楚題中的等量關(guān)系是解答本題的關(guān)鍵.5、D【解析】解:A.不是同類二次根式,不能合并,故A錯誤;B.

,故B錯誤;C.,故C錯誤;D.,正確.故選D.6、C【解析】

科學(xué)記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時(shí),要看把原數(shù)變成時(shí),小數(shù)點(diǎn)移動了多少位,的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),是負(fù)數(shù).【詳解】用科學(xué)記數(shù)法表示1915.5億應(yīng)為1.9155×1011,故選C.【點(diǎn)睛】考查科學(xué)記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關(guān)鍵.7、C【解析】

分別求出每一個(gè)不等式的解集,根據(jù)口訣:大小小大中間找確定不等式組的解集,在數(shù)軸上表示時(shí)由包括該數(shù)用實(shí)心點(diǎn)、不包括該數(shù)用空心點(diǎn)判斷即可.【詳解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式組的解集為:2<x≤4,故選:C.【點(diǎn)睛】本題考查的是解一元一次不等式組,正確求出每一個(gè)不等式解集是基礎(chǔ),熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.8、B【解析】試題解析:方差越小,波動越小.數(shù)據(jù)B的波動小一些.故選B.點(diǎn)睛:本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.9、B【解析】

依據(jù)平方根的定義求解即可.【詳解】∵(±1)1=4,∴4的平方根是±1.故選B.【點(diǎn)睛】本題主要考查的是平方根的定義,掌握平方根的定義是解題的關(guān)鍵.10、C【解析】【分析】根據(jù)相關(guān)的定義(調(diào)查方式,概率,可能事件,必然事件)進(jìn)行分析即可.【詳解】A.檢測一批燈泡的使用壽命不適宜用普查,因?yàn)橛衅茐男?;B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就可能有5次正面朝上,因?yàn)檫@是隨機(jī)事件;C.“367人中有兩人是同月同日生”為必然事件.因?yàn)橐荒曛挥?65天或366天,所以367人中至少有兩個(gè)日子相同;D.“多邊形內(nèi)角和與外角和相等”是可能事件.如四邊形內(nèi)角和和外角和相等.故正確選項(xiàng)為:C【點(diǎn)睛】本題考核知識點(diǎn):對(調(diào)查方式,概率,可能事件,必然事件)理解.解題關(guān)鍵:理解相關(guān)概念,合理運(yùn)用舉反例法.11、B【解析】

將圓補(bǔ)充完整,利用圓周角定理找出點(diǎn)E的位置,再根據(jù)菱形的性質(zhì)即可得出△CME為等邊三角形,進(jìn)而即可得出∠AEC的值.【詳解】將圓補(bǔ)充完整,找出點(diǎn)E的位置,如圖所示.∵弧AD所對的圓周角為∠ACD、∠AEC,∴圖中所標(biāo)點(diǎn)E符合題意.∵四邊形∠CMEN為菱形,且∠CME=60°,∴△CME為等邊三角形,∴∠AEC=60°.故選B.【點(diǎn)睛】本題考查了菱形的性質(zhì)、等邊三角形的判定依據(jù)圓周角定理,根據(jù)圓周角定理結(jié)合圖形找出點(diǎn)E的位置是解題的關(guān)鍵.12、B【解析】

根據(jù)冪的運(yùn)算法則及整式的加減運(yùn)算即可判斷.【詳解】A.=x6,故錯誤;B.,正確;C.·=,故錯誤;D.3+2不能合并,故錯誤,故選B.【點(diǎn)睛】此題主要考查整式的加減及冪的運(yùn)算,解題的關(guān)鍵是熟知其運(yùn)算法則.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】

方程常數(shù)項(xiàng)移到右邊,兩邊加上25配方得到結(jié)果,求出m與n的值即可.【詳解】解:∵x2+10x-11=0,∴x2+10x=11,則x2+10x+25=11+25,即(x+5)2=36,∴m=5、n=36,∴m+n=1,故答案為1.【點(diǎn)睛】此題考查了解一元二次方程-配方法,熟練掌握完全平方公式是解本題的關(guān)鍵.14、1【解析】

要求所用細(xì)線的最短距離,需將長方體的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.【詳解】解:將長方體展開,連接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根據(jù)兩點(diǎn)之間線段最短,AB′==1cm.故答案為1.考點(diǎn):平面展開-最短路徑問題.15、【解析】∵=8,()2=8,∴的算術(shù)平方根是.故答案為:.16、3或【解析】

以B.E.D為頂點(diǎn)的三角形與△DEF相似分兩種情形畫圖分別求解即可.【詳解】如圖作CM⊥AB當(dāng)∠FED=∠EDB時(shí),∵∠B=∠EAF=∠EDF∴△EDF~△DBE∴EF∥CB,設(shè)EF交AD于點(diǎn)O∵AO=OD,OE∥BD∴AE=EB=3當(dāng)∠FED=∠DEB時(shí)則∠FED=∠FEA=∠DEB=60°此時(shí)△FED~△DEB,設(shè)AE=ED=x,作DN⊥AB于N,則EN=,DN=,∵DN∥CM,∴∴∴x∴BE=6-x=故答案為3或【點(diǎn)睛】本題考察學(xué)生對相似三角形性質(zhì)定理的掌握和應(yīng)用,熟練掌握相似三角形性質(zhì)定理是解答本題的關(guān)鍵,本題計(jì)算量比較大,計(jì)算能力也很關(guān)鍵.17、10%【解析】

設(shè)降價(jià)的百分率為x,則第一次降價(jià)后的單價(jià)是原來的(1?x),第二次降價(jià)后的單價(jià)是原來的(1?x)2,根據(jù)題意列方程解答即可.【詳解】解:設(shè)降價(jià)的百分率為x,根據(jù)題意列方程得:100×(1?x)2=81解得x1=0.1,x2=1.9(不符合題意,舍去).所以降價(jià)的百分率為0.1,即10%.故答案為:10%.【點(diǎn)睛】本題考查了一元二次方程的應(yīng)用.找到關(guān)鍵描述語,根據(jù)等量關(guān)系準(zhǔn)確的列出方程是解決問題的關(guān)鍵.還要判斷所求的解是否符合題意,舍去不合題意的解.18、①②④【解析】①由a=b,得5﹣2a=5﹣2b,根據(jù)等式的性質(zhì)先將式子兩邊同時(shí)乘以-2,再將等式兩邊同時(shí)加上5,等式仍成立,所以本選項(xiàng)正確,②由a=b,得ac=bc,根據(jù)等式的性質(zhì),等式兩邊同時(shí)乘以相同的式子,等式仍成立,所以本選項(xiàng)正確,③由a=b,得,根據(jù)等式的性質(zhì),等式兩邊同時(shí)除以一個(gè)不為0的數(shù)或式子,等式仍成立,因?yàn)榭赡転?,所以本選項(xiàng)不正確,④由,得3a=2b,根據(jù)等式的性質(zhì),等式兩邊同時(shí)乘以相同的式子6c,等式仍成立,所以本選項(xiàng)正確,⑤因?yàn)榛橄喾磾?shù)的平方也相等,由a2=b2,得a=b,或a=-b,所以本選項(xiàng)錯誤,故答案為:①②④.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2),;(3)【解析】試題分析:(1)根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征易得k=2;(2)作BH⊥AD于H,如圖1,根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征確定B點(diǎn)坐標(biāo)為(1,2),則AH=2﹣1,BH=2﹣1,可判斷△ABH為等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根據(jù)特殊角的三角函數(shù)值得tan∠DAC=;由于AD⊥y軸,則OD=1,AD=2,然后在Rt△OAD中利用正切的定義可計(jì)算出CD=2,易得C點(diǎn)坐標(biāo)為(0,﹣1),于是可根據(jù)待定系數(shù)法求出直線AC的解析式為y=x﹣1;(3)利用M點(diǎn)在反比例函數(shù)圖象上,可設(shè)M點(diǎn)坐標(biāo)為(t,)(0<t<2),由于直線l⊥x軸,與AC相交于點(diǎn)N,得到N點(diǎn)的橫坐標(biāo)為t,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征得到N點(diǎn)坐標(biāo)為(t,t﹣1),則MN=﹣t+1,根據(jù)三角形面積公式得到S△CMN=?t?(﹣t+1),再進(jìn)行配方得到S=﹣(t﹣)2+(0<t<2),最后根據(jù)二次函數(shù)的最值問題求解.試題解析:(1)把A(2,1)代入y=,得k=2×1=2;(2)作BH⊥AD于H,如圖1,把B(1,a)代入反比例函數(shù)解析式y(tǒng)=,得a=2,∴B點(diǎn)坐標(biāo)為(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH為等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y軸,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C點(diǎn)坐標(biāo)為(0,﹣1),設(shè)直線AC的解析式為y=kx+b,把A(2,1)、C(0,﹣1)代入得,解得,∴直線AC的解析式為y=x﹣1;(3)設(shè)M點(diǎn)坐標(biāo)為(t,)(0<t<2),∵直線l⊥x軸,與AC相交于點(diǎn)N,∴N點(diǎn)的橫坐標(biāo)為t,∴N點(diǎn)坐標(biāo)為(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,∴S△CMN=?t?(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),∵a=﹣<0,∴當(dāng)t=時(shí),S有最大值,最大值為.20、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【解析】

(1)把y=x2﹣2x+3配成頂點(diǎn)式得到拋物線上的點(diǎn)到x軸的最短距離,然后根據(jù)題意解決問題;(2)如圖,P點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數(shù)的性質(zhì)得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對他的看法進(jìn)行判斷;(3)M點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點(diǎn)到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,當(dāng)t=時(shí),PQ有最小值,最小值為,∴拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”為,而過拋物線的頂點(diǎn)向x軸作垂線與直線相交,拋物線頂點(diǎn)與交點(diǎn)之間的距離為2,∴不同意他的看法;(3)M點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,當(dāng)t=時(shí),MN有最小值,最小值為﹣c,∴拋物線y=x2﹣2x+3與拋物線的“親近距離”為﹣c,∴,∴c=1.【點(diǎn)睛】本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征和二次函數(shù)的性質(zhì),正確理解新定義是解題的關(guān)鍵.21、(1)證明見解析;(2)AE=2時(shí),△AEF的面積最大.【解析】

(1)根據(jù)正方形的性質(zhì),可得EF=CE,再根據(jù)∠CEF=∠90°,進(jìn)而可得∠FEH=∠DCE,結(jié)合已知條件∠FHE=∠D=90°,利用“AAS”即可證明△FEH≌△ECD,由全等三角形的性質(zhì)可得FH=ED;(2)設(shè)AE=a,用含a的函數(shù)表示△AEF的面積,再利用函數(shù)的最值求面積最大值即可.【詳解】(1)證明:∵四邊形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,EF=CE∠F∴△FEH≌△ECD,∴FH=ED.(2)解:設(shè)AE=a,則ED=FH=4-a,∴S△AEF=12AE·FH=12a(4-a)=-12∴當(dāng)AE=2時(shí),△AEF的面積最大.【點(diǎn)睛】本題考查了正方形性質(zhì)、矩形性質(zhì)以及全等三角形的判斷和性質(zhì)和三角形面積有關(guān)的知識點(diǎn),熟記全等三角形的各種判斷方法是解題的關(guān)鍵.22、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】

(1)將A(?1,0)、C(0,?3)兩點(diǎn)坐標(biāo)代入拋物線y=ax2+bx?3a中,列方程組求a、b的值即可;(2)將點(diǎn)D(m,?m?1)代入(1)中的拋物線解析式,求m的值,再根據(jù)對稱性求點(diǎn)D關(guān)于直線BC對稱的點(diǎn)D'的坐標(biāo);(3)分兩種情形①過點(diǎn)C作CP∥BD,交x軸于P,則∠PCB=∠CBD,②連接BD′,過點(diǎn)C作CP′∥BD′,交x軸于P′,分別求出直線CP和直線CP′的解析式即可解決問題.【詳解】解:(1)將A(?1,0)、C(0,?3)代入拋物線y=ax2+bx?3a中,得,解得∴y=x2?2x?3;(2)將點(diǎn)D(m,?m?1)代入y=x2?2x?3中,得m2?2m?3=?m?1,解得m=2或?1,∵點(diǎn)D(m,?m?1)在第四象限,∴D(2,?3),∵直線BC解析式為y=x?3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3?2=1,∴點(diǎn)D關(guān)于直線BC對稱的點(diǎn)D'(0,?1);(3)存在.滿足條件的點(diǎn)P有兩個(gè).①過點(diǎn)C作CP∥BD,交x軸于P,則∠PCB=∠CBD,∵直線BD解析式為y=3x?9,∵直線CP過點(diǎn)C,∴直線CP的解析式為y=3x?3,∴點(diǎn)P坐標(biāo)(1,0),②連接BD′,過點(diǎn)C作CP′∥BD′,交x軸于P′,∴∠P′CB=∠D′BC,根據(jù)對稱性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直線BD′的解析式為∵直線CP′過點(diǎn)C,∴直線CP′解析式為,∴P′坐標(biāo)為(9,0),綜上所述,滿足條件的點(diǎn)P坐標(biāo)為(1,0)或(9,0).【點(diǎn)睛】本題考查了二次函數(shù)的綜合運(yùn)用.關(guān)鍵是由已知條件求拋物線解析式,根據(jù)拋物線的對稱性,直線BC的特殊性求點(diǎn)的坐標(biāo),學(xué)會分類討論,不能漏解.23、(1)見解析;(2)菱形.【解析】

(1)根據(jù)角平分線的性質(zhì)可得∠ADE=∠CDE,再由平行線的性質(zhì)可得AB∥CD,易得AD=AE,從而可證得結(jié)論;(2)若點(diǎn)與點(diǎn)重合,可證得AD=AB,根據(jù)鄰邊相等的平行四邊形是菱形即可作出判斷.【詳解】(1)∵DE平分∠ADC,∴∠ADE=∠CDE.∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,AD=BC,AB=CD.∵∠AED=∠CDE.∴∠ADE=∠AED.∴AD=AE.∴BC=AE.∵AB=AE+EB.∴BE+BC=CD.(2)菱形,理由如下:由(1)可知,AD=AE,∵點(diǎn)E與B重合,∴AD=AB.∵四邊形ABCD是平行四邊形∴平行四邊形ABCD為菱形.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),平行線的性質(zhì),等腰三角形的性質(zhì),菱形的性質(zhì),熟練掌握各知識是解題的關(guān)鍵.24、(1)1;(2)點(diǎn)D(8﹣23,0);(3)點(diǎn)D的坐標(biāo)為(35﹣1,0)或(﹣35﹣1,0).【解析】分析:(Ⅰ)由點(diǎn)B的坐標(biāo)知OA=8、AB=1、OB=10,根據(jù)折疊性質(zhì)可得BA=BA′=1,據(jù)此可得答案;(Ⅱ)連接AA′,利用折疊的性質(zhì)和中垂線的性質(zhì)證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據(jù)此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點(diǎn)D在OA上和點(diǎn)D在AO延長線上這兩種情況,利用相似三角形的判定和性質(zhì)分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點(diǎn)A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點(diǎn)D(8﹣23,0);(Ⅲ)①如圖3,當(dāng)點(diǎn)D在OA上時(shí).由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點(diǎn)A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當(dāng)點(diǎn)D在AO延長線上時(shí),過點(diǎn)A′作x軸的平行線交y軸于點(diǎn)M,延長AB交所作直線于點(diǎn)N,則BN=CM,MN=BC=OA=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論