![2023-2024學(xué)年河北省衡水重點中學(xué)高三第二次模擬考試數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view4/M01/3D/0B/wKhkGGYXNE6AcCJiAAJcy1IrG1w415.jpg)
![2023-2024學(xué)年河北省衡水重點中學(xué)高三第二次模擬考試數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view4/M01/3D/0B/wKhkGGYXNE6AcCJiAAJcy1IrG1w4152.jpg)
![2023-2024學(xué)年河北省衡水重點中學(xué)高三第二次模擬考試數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view4/M01/3D/0B/wKhkGGYXNE6AcCJiAAJcy1IrG1w4153.jpg)
![2023-2024學(xué)年河北省衡水重點中學(xué)高三第二次模擬考試數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view4/M01/3D/0B/wKhkGGYXNE6AcCJiAAJcy1IrG1w4154.jpg)
![2023-2024學(xué)年河北省衡水重點中學(xué)高三第二次模擬考試數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view4/M01/3D/0B/wKhkGGYXNE6AcCJiAAJcy1IrG1w4155.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年河北省衡水重點中學(xué)高三第二次模擬考試數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,若方程有唯一解,則實數(shù)的取值范圍是()A. B.C. D.2.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點的橫坐標(biāo)()A.伸長到原來的2倍(縱坐標(biāo)不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標(biāo)不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標(biāo)不變),再將得到的圖象向右平移個單位長度3.若,,則的值為()A. B. C. D.4.一小商販準(zhǔn)備用元錢在一批發(fā)市場購買甲、乙兩種小商品,甲每件進(jìn)價元,乙每件進(jìn)價元,甲商品每賣出去件可賺元,乙商品每賣出去件可賺元.該商販若想獲取最大收益,則購買甲、乙兩種商品的件數(shù)應(yīng)分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件5.已知為一條直線,為兩個不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則6.某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是()注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多7.復(fù)數(shù)滿足,則復(fù)數(shù)等于()A. B. C.2 D.-28.設(shè)曲線在點處的切線方程為,則()A.1 B.2 C.3 D.49.過直線上一點作圓的兩條切線,,,為切點,當(dāng)直線,關(guān)于直線對稱時,()A. B. C. D.10.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.11.已知橢圓內(nèi)有一條以點為中點的弦,則直線的方程為()A. B.C. D.12.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中含有的項的系數(shù)是,則展開式中各項系數(shù)和為______.14.已知下列命題:①命題“?x0∈R,”的否定是“?x∈R,x2+1<3x”;②已知p,q為兩個命題,若“p∨q”為假命題,則“”為真命題;③“a>2”是“a>5”的充分不必要條件;④“若xy=0,則x=0且y=0”的逆否命題為真命題.其中所有真命題的序號是________.15.從編號為,,,的張卡片中隨機抽取一張,放回后再隨機抽取一張,則第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字整除的概率為_____________.16.若實數(shù)滿足約束條件,設(shè)的最大值與最小值分別為,則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求曲線在點處的切線方程;(2)若對任意的,當(dāng)時,都有恒成立,求最大的整數(shù).(參考數(shù)據(jù):)18.(12分)為響應(yīng)“堅定文化自信,建設(shè)文化強國”,提升全民文化修養(yǎng),引領(lǐng)學(xué)生“讀經(jīng)典用經(jīng)典”,某廣播電視臺計劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的數(shù)據(jù)采集中,在某高中學(xué)校隨機抽取了120名學(xué)生做調(diào)查,統(tǒng)計結(jié)果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國古典文學(xué)和不喜歡的比例是7:5,女生中喜歡閱讀中國古典文學(xué)和不喜歡的比例是5:3.(1)填寫下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認(rèn)為喜歡閱讀中國古典文學(xué)與性別有關(guān)系?男生女生總計喜歡閱讀中國古典文學(xué)不喜歡閱讀中國古典文學(xué)總計(2)為做好文化建設(shè)引領(lǐng),實驗組把該校作為試點,和該校的學(xué)生進(jìn)行中國古典文學(xué)閱讀交流.實驗人員已經(jīng)從所調(diào)查的120人中篩選出4名男生和3名女生共7人作為代表,這7個代表中有2名男生代表和2名女生代表喜歡中國古典文學(xué).現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會,記為參加會議的人中喜歡古典文學(xué)的人數(shù),求5的分布列及數(shù)學(xué)期望附表及公式:.19.(12分)為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護意識,高二年級準(zhǔn)備成立一個環(huán)境保護興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護興趣小組,再從這10人的興趣小組中抽出4人參加學(xué)校的環(huán)保知識競賽.(1)設(shè)事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發(fā)生的概率;(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學(xué)期望.20.(12分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計劃建造一條自小鎮(zhèn)經(jīng)小島至對岸的水上通道(圖中粗線部分折線段,在右側(cè)),為保護小島,段設(shè)計成與圓相切.設(shè).(1)試將通道的長表示成的函數(shù),并指出定義域;(2)若建造通道的費用是每公里100萬元,則建造此通道最少需要多少萬元?21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)為曲線上位于第一,二象限的兩個動點,且,射線交曲線分別于,求面積的最小值,并求此時四邊形的面積.22.(10分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
求出的表達(dá)式,畫出函數(shù)圖象,結(jié)合圖象以及二次方程實根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過,,由,,可得,,,若方程有唯一解,則或,即或;當(dāng)即圖象相切時,根據(jù),,解得舍去),則的范圍是,故選:.【點睛】本題考查函數(shù)的零點問題,考查函數(shù)方程的轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.2、B【解析】
分析:根據(jù)三角函數(shù)的圖象關(guān)系進(jìn)行判斷即可.詳解:將函數(shù)圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),
得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數(shù)的圖象變換,結(jié)合和的關(guān)系是解決本題的關(guān)鍵.3、A【解析】
取,得到,取,則,計算得到答案.【詳解】取,得到;取,則.故.故選:.【點睛】本題考查了二項式定理的應(yīng)用,取和是解題的關(guān)鍵.4、D【解析】
由題意列出約束條件和目標(biāo)函數(shù),數(shù)形結(jié)合即可解決.【詳解】設(shè)購買甲、乙兩種商品的件數(shù)應(yīng)分別,利潤為元,由題意,畫出可行域如圖所示,顯然當(dāng)經(jīng)過時,最大.故選:D.【點睛】本題考查線性目標(biāo)函數(shù)的線性規(guī)劃問題,解決此類問題要注意判斷,是否是整數(shù),是否是非負(fù)數(shù),并準(zhǔn)確的畫出可行域,本題是一道基礎(chǔ)題.5、D【解析】A.若,則或,故A錯誤;B.若,則或故B錯誤;C.若,則或,或與相交;D.若,則,正確.故選D.6、D【解析】
根據(jù)兩個圖形的數(shù)據(jù)進(jìn)行觀察比較,即可判斷各選項的真假.【詳解】在A中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖得到互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占56%,所以是正確的;在B中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到:,互聯(lián)網(wǎng)行業(yè)從業(yè)技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的,所以是正確的;在C中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分別條形圖得到:,互聯(lián)網(wǎng)行業(yè)從事運營崗位的人數(shù)90后比80后多,所以是正確的;在D中,互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后所占比例為,所以不能判斷互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多.故選:D.【點睛】本題主要考查了命題的真假判定,以及統(tǒng)計圖表中餅狀圖和條形圖的性質(zhì)等基礎(chǔ)知識的應(yīng)用,著重考查了推理與運算能力,屬于基礎(chǔ)題.7、B【解析】
通過復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運算,化簡求解即可.【詳解】復(fù)數(shù)滿足,∴,故選B.【點睛】本題主要考查復(fù)數(shù)的基本運算,復(fù)數(shù)模長的概念,屬于基礎(chǔ)題.8、D【解析】
利用導(dǎo)數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D【點睛】本題考查導(dǎo)數(shù)的幾何意義,考查運算求解能力,是基礎(chǔ)題9、C【解析】
判斷圓心與直線的關(guān)系,確定直線,關(guān)于直線對稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質(zhì)求出,得,從而得.【詳解】如圖,設(shè)圓的圓心為,半徑為,點不在直線上,要滿足直線,關(guān)于直線對稱,則必垂直于直線,∴,設(shè),則,,∴,.故選:C.【點睛】本題考查直線與圓的位置關(guān)系,考查直線的對稱性,解題關(guān)鍵是由圓的兩條切線關(guān)于直線對稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.10、D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.11、C【解析】
設(shè),,則,,相減得到,解得答案.【詳解】設(shè),,設(shè)直線斜率為,則,,相減得到:,的中點為,即,故,直線的方程為:.故選:.【點睛】本題考查了橢圓內(nèi)點差法求直線方程,意在考查學(xué)生的計算能力和應(yīng)用能力.12、B【解析】
根據(jù)斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側(cè)面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【詳解】根據(jù)“斜二測畫法”可得,,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【點睛】本題考查斜二測畫法的應(yīng)用及組合體的表面積求法,難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由二項式定理及展開式通項公式得:,解得,令得:展開式中各項系數(shù)和,得解.【詳解】解:由的展開式的通項,令,得含有的項的系數(shù)是,解得,令得:展開式中各項系數(shù)和為,故答案為:1.【點睛】本題考查了二項式定理及展開式通項公式,屬于中檔題.14、②【解析】命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①錯誤;“p∨q”為假命題說明p假q假,則(p)∧(q)為真命題,故②正確;a>5?a>2,但a>2?/a>5,故“a>2”是“a>5”的必要不充分條件,故③錯誤;因為“若xy=0,則x=0或y=0”,所以原命題為假命題,故其逆否命題也為假命題,故④錯誤.15、【解析】
基本事件總數(shù),第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字的基本事件有8個,由此能求出概率.【詳解】解:從編號為,,,的張卡片中隨機抽取一張,放回后再隨機抽取一張,基本事件總數(shù),第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字的基本事件有8個,分別為:,,,,,,,.所以第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字整除的概率為.故答案為.【點睛】本題考查概率的求法,考查古典概型、列舉法等基礎(chǔ)知識,屬于基礎(chǔ)題.16、【解析】
畫出可行域,平移基準(zhǔn)直線到可行域邊界位置,由此求得最大值以及最小值,進(jìn)而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當(dāng)直線過點時,取得最大值7;過點時,取得最小值2,所以.【點睛】本小題主要考查利用線性規(guī)劃求線性目標(biāo)函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標(biāo)函數(shù)的基準(zhǔn)函數(shù);接著畫出基準(zhǔn)函數(shù)對應(yīng)的基準(zhǔn)直線;然后通過平移基準(zhǔn)直線到可行域邊界的位置;最后求出所求的最值.屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)2【解析】
(1)先求得切點坐標(biāo),利用導(dǎo)數(shù)求得切線的斜率,由此求得切線方程.(2)對分成,兩種情況進(jìn)行分類討論.當(dāng)時,將不等式轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的最小值(設(shè)為)的取值范圍,由的得在上恒成立,結(jié)合一元二次不等式恒成立,判別式小于零列不等式,解不等式求得的取值范圍.【詳解】(1)已知函數(shù),則處即為,又,,可知函數(shù)過點的切線為,即.(2)注意到,不等式中,當(dāng)時,顯然成立;當(dāng)時,不等式可化為令,則,,所以存在,使.由于在上遞增,在上遞減,所以是的唯一零點.且在區(qū)間上,遞減,在區(qū)間上,遞增,即的最小值為,令,則,將的最小值設(shè)為,則,因此原式需滿足,即在上恒成立,又,可知判別式即可,即,且可以取到的最大整數(shù)為2.【點睛】本小題主要考查利用導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究不等式恒成立問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.18、(1)見解析,沒有(2)見解析,【解析】
(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計算出的值,由此判斷出沒有的把握認(rèn)為喜歡閱讀中國古典文學(xué)與性別有關(guān)系.(2)先判斷出的所有可能取值,然后根據(jù)古典概型概率計算公式,計算出分布列并求得數(shù)學(xué)期望.【詳解】(1)男生女生總計喜歡閱讀中國古典文學(xué)423072不喜歡閱讀中國古典文學(xué)301848總計7248120所以,沒有的把握認(rèn)為喜歡閱讀中國古典文學(xué)與性別有關(guān)系.(2)設(shè)參加座談會的男生中喜歡中國古典文學(xué)的人數(shù)為,女生中喜歡古典文學(xué)的人數(shù)為,則.且;;.所以的分布列為則.【點睛】本小題主要考查列聯(lián)表獨立性檢驗,考查隨機變量分布列和數(shù)學(xué)期望的求法,考查數(shù)據(jù)處理能力,屬于中檔題.19、(1);(2)見解析【解析】
(1)按分層抽樣得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超幾何分布求解即可【詳解】(1)因為學(xué)生總數(shù)為1000人,該年級分文、理科按男女用分層抽樣抽取10人,則抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值為0,1,2,3,,,,,的分布列為0123.【點睛】本題考查分層抽樣,考查超幾何分布及期望,考查運算求解能力,是基礎(chǔ)題20、(1),定義域是.(2)百萬【解析】
(1)以為原點,直線為軸建立如圖所示的直角坐標(biāo)系,設(shè),利用直線與圓相切得到,再代入這一關(guān)系中,即可得答案;(2)利用導(dǎo)數(shù)求函數(shù)的最小值,即可得答案;【詳解】以為原點,直線為軸建立如圖所示的直角坐標(biāo)系.設(shè),則,,.因為,所以直線的方程為,即,因為圓與相切,所以,即,從而得,在直線的方程中,令,得,所以,所以當(dāng)時,,設(shè)銳角滿足,則,所以關(guān)于的函數(shù)是,定義域是.(2)要使建造此通道費用最少,只要通道的長度即最小.令,得,設(shè)銳角,滿足,得.列表:0減極小值增所以時,,所以建造此通道的最少費用至少為百萬元.【點睛】本題考查三角函數(shù)模型的實際應(yīng)用、利用導(dǎo)數(shù)求函數(shù)的最小值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡(luò)客服工作總結(jié)及時解答解決用戶問題
- 食品行業(yè)食品安全培訓(xùn)總結(jié)
- AIDS抗病毒治療課件
- 2025年全球及中國血流動力學(xué)監(jiān)測解決方案行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球新能源交流繼電器行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球剛性墻庇護所行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國游戲視頻背景音樂行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球滑移轉(zhuǎn)向巖石拾取器行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球甲氧氯普胺片行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國工業(yè)級硅酸鉀行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 充電樁知識培訓(xùn)課件
- 2025年七年級下冊道德與法治主要知識點
- 2025年交通運輸部長江口航道管理局招聘4人歷年高頻重點提升(共500題)附帶答案詳解
- 老年髖部骨折患者圍術(shù)期下肢深靜脈血栓基礎(chǔ)預(yù)防專家共識(2024版)解讀
- 偏癱足內(nèi)翻的治療
- 藥企質(zhì)量主管競聘
- 信息對抗與認(rèn)知戰(zhàn)研究-洞察分析
- 心腦血管疾病預(yù)防課件
- 手術(shù)室專科護士工作總結(jié)匯報
- 2025屆高三聽力技巧指導(dǎo)-預(yù)讀、預(yù)測
- 蘇州市2025屆高三期初陽光調(diào)研(零模)政治試卷(含答案)
評論
0/150
提交評論