版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年河南平頂山市高三第三次測評數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標準方程為()A. B. C. D.2.記個兩兩無交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間3.數(shù)列滿足:,,,為其前n項和,則()A.0 B.1 C.3 D.44.已知復數(shù)是純虛數(shù),其中是實數(shù),則等于()A. B. C. D.5.不等式的解集記為,有下面四個命題:;;;.其中的真命題是()A. B. C. D.6.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.7.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.48.已知拋物線上的點到其焦點的距離比點到軸的距離大,則拋物線的標準方程為()A. B. C. D.9.已知函數(shù),,若,對任意恒有,在區(qū)間上有且只有一個使,則的最大值為()A. B. C. D.10.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還.”意思為有一個人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達目的地,請問第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里11.已知直線:()與拋物線:交于(坐標原點),兩點,直線:與拋物線交于,兩點.若,則實數(shù)的值為()A. B. C. D.12.函數(shù)在上的大致圖象是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_________.14.有2名老師和3名同學,將他們隨機地排成一行,用表示兩名老師之間的學生人數(shù),則對應的排法有______種;______;15.在中,,是的角平分線,設,則實數(shù)的取值范圍是__________.16.某公園劃船收費標準如表:某班16名同學一起去該公園劃船,若每人劃船的時間均為1小時,每只租船必須坐滿,租船最低總費用為______元,租船的總費用共有_____種可能.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)心形線是由一個圓上的一個定點,當該圓在繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點的軌跡,因其形狀像心形而得名,在極坐標系中,方程()表示的曲線就是一條心形線,如圖,以極軸所在的直線為軸,極點為坐標原點的直角坐標系中.已知曲線的參數(shù)方程為(為參數(shù)).(1)求曲線的極坐標方程;(2)若曲線與相交于、、三點,求線段的長.18.(12分)已知函數(shù),.(1)求曲線在點處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間;(3)判斷函數(shù)的零點個數(shù).19.(12分)如圖,點是以為直徑的圓上異于、的一點,直角梯形所在平面與圓所在平面垂直,且,.(1)證明:平面;(2)求點到平面的距離.20.(12分)已知數(shù)列滿足且(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.21.(12分)已知函數(shù)(為常數(shù))(Ⅰ)當時,求的單調(diào)區(qū)間;(Ⅱ)若為增函數(shù),求實數(shù)的取值范圍.22.(10分)已知函數(shù),.(1)若,,求實數(shù)的值.(2)若,,求正實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
設雙曲線的漸近線方程為,與拋物線方程聯(lián)立,利用,求出的值,得到的值,求出關系,進而判斷大小,結合橢圓的焦距為2,即可求出結論.【詳解】設雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標準方程為.故選:B.【點睛】本題考查橢圓和雙曲線的標準方程、雙曲線的簡單幾何性質(zhì),要注意雙曲線焦點位置,屬于中檔題.2、D【解析】
可判斷函數(shù)為奇函數(shù),先討論當且時的導數(shù)情況,再畫出函數(shù)大致圖形,將所求區(qū)間端點值分別看作對應常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當且時,.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對應自變量范圍,導數(shù)法研究函數(shù)增減性,數(shù)形結合思想,轉化與化歸思想,屬于難題3、D【解析】
用去換中的n,得,相加即可找到數(shù)列的周期,再利用計算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【點睛】本題考查周期數(shù)列的應用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.4、A【解析】
對復數(shù)進行化簡,由于為純虛數(shù),則化簡后的復數(shù)形式中,實部為0,得到的值,從而得到復數(shù).【詳解】因為為純虛數(shù),所以,得所以.故選A項【點睛】本題考查復數(shù)的四則運算,純虛數(shù)的概念,屬于簡單題.5、A【解析】
作出不等式組表示的可行域,然后對四個選項一一分析可得結果.【詳解】作出可行域如圖所示,當時,,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點睛】此題考查命題的真假判斷與應用,著重考查作圖能力,熟練作圖,正確分析是關鍵,屬于中檔題.6、D【解析】
試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.7、B【解析】
解出,分別代入選項中的值進行驗證.【詳解】解:,.當時,,此時不成立.當時,,此時成立,符合題意.故選:B.【點睛】本題考查了不等式的解法,考查了集合的關系.8、B【解析】
由拋物線的定義轉化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點M到其焦點F的距離比點M到y(tǒng)軸的距離大,根據(jù)拋物線的定義可得,,所以拋物線的標準方程為:y2=2x.故選B.【點睛】本題考查了拋物線的簡單性質(zhì)的應用,拋物線方程的求法,屬于基礎題.9、C【解析】
根據(jù)的零點和最值點列方程組,求得的表達式(用表示),根據(jù)在上有且只有一個最大值,求得的取值范圍,求得對應的取值范圍,由為整數(shù)對的取值進行驗證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個最大值,所以,得,即,所以,又,因此.①當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;②當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;③當時,,此時取可使成立,當時,,所以當時,成立;綜上所得的最大值為.故選:C【點睛】本小題主要考查三角函數(shù)的零點和最值,考查三角函數(shù)的性質(zhì),考查化歸與轉化的數(shù)學思想方法,考查分類討論的數(shù)學思想方法,屬于中檔題.10、B【解析】
人每天走的路程構成公比為的等比數(shù)列,設此人第一天走的路程為,計算,代入得到答案.【詳解】由題意可知此人每天走的路程構成公比為的等比數(shù)列,設此人第一天走的路程為,則,解得,從而可得,故.故選:.【點睛】本題考查了等比數(shù)列的應用,意在考查學生的計算能力和應用能力.11、D【解析】
設,,聯(lián)立直線與拋物線方程,消去、列出韋達定理,再由直線與拋物線的交點求出點坐標,最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設,,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點睛】本題考查直線與拋物線的綜合應用,弦長公式的應用,屬于中檔題.12、D【解析】
討論的取值范圍,然后對函數(shù)進行求導,利用導數(shù)的幾何意義即可判斷.【詳解】當時,,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數(shù)在上單調(diào)遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數(shù)的圖像,考查了導數(shù)與函數(shù)單調(diào)性的關系以及導數(shù)的幾何意義,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、;【解析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,,所以體積是,解得,四個側面都是直角三角形,所以計算出邊長,表面積是考點:1.三視圖;2.幾何體的表面積.14、36;1.【解析】
的可能取值為0,1,2,3,對應的排法有:.分別求出,,,,由此能求出.【詳解】解:有2名老師和3名同學,將他們隨機地排成一行,用表示兩名老師之間的學生人數(shù),則的可能取值為0,1,2,3,對應的排法有:.∴對應的排法有36種;,,,,∴故答案為:36;1.【點睛】本題考查了排列、組合的應用,離散型隨機變量的分布列以及數(shù)學期望,屬于中檔題.15、【解析】
設,,,由,用面積公式表示面積可得到,利用,即得解.【詳解】設,,,由得:,化簡得,由于,故.故答案為:【點睛】本題考查了解三角形綜合,考查了學生轉化劃歸,綜合分析,數(shù)學運算能力,屬于中檔題.16、36010【解析】
列出所有租船的情況,分別計算出租金,由此能求出結果.【詳解】當租兩人船時,租金為:元,當租四人船時,租金為:元,當租1條四人船6條兩人船時,租金為:元,當租2條四人船4條兩人船時,租金為:元,當租3條四人船2條兩人船時,租金為:元,當租1條六人船5條2人船時,租金為:元,當租2條六人船2條2人船時,租金為:元,當租1條六人船1條四人船3條2人船時,租金為:元,當租1條六人船2條四人船1條2人船時,租金為:元,當租2條六人船1條四人船時,租金為:元,綜上,租船最低總費用為360元,租船的總費用共有10種可能.故答案為:360,10.【點睛】本小題主要考查分類討論的數(shù)學思想方法,考查實際應用問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)();(2).【解析】
(1)化簡得到直線方程為,再利用極坐標公式計算得到答案.(2)聯(lián)立方程計算得到,,計算得到答案.【詳解】(1)由消得,即,是過原點且傾斜角為的直線,∴的極坐標方程為().(2)由得,∴,由得∴,∴.【點睛】本題考查了參數(shù)方程,極坐標方程,意在考查學生的計算能力和應用能力.18、(1)(2)答案見解析(3)答案見解析【解析】
(1)設曲線在點,處的切線的斜率為,可求得,,利用直線的點斜式方程即可求得答案;(2)由(Ⅰ)知,,分時,,三類討論,即可求得各種情況下的的單調(diào)區(qū)間為;(3)分與兩類討論,即可判斷函數(shù)的零點個數(shù).【詳解】(1),,設曲線在點,處的切線的斜率為,則,又,曲線在點,處的切線方程為:,即;(2)由(1)知,,故當時,,所以在上單調(diào)遞增;當時,,;,,;的遞減區(qū)間為,遞增區(qū)間為,;當時,同理可得的遞增區(qū)間為,遞減區(qū)間為,;綜上所述,時,單調(diào)遞增為,無遞減區(qū)間;當時,的遞減區(qū)間為,遞增區(qū)間為,;當時,的遞增區(qū)間為,遞減區(qū)間為,;(3)當時,恒成立,所以無零點;當時,由,得:,只有一個零點.【點睛】本題考查利用導數(shù)研究曲線上某點的切線方程,利用導數(shù)研究函數(shù)的單調(diào)性,考查分類討論思想與推理、運算能力,屬于中檔題.19、(1)見解析;(2)【解析】
(1)取的中點,證明,則平面平面,則可證平面.(2)利用,是平面的高,容易求.,再求,則點到平面的距離可求.【詳解】解:(1)如圖:取的中點,連接、.在中,是的中點,是的中點,平面平面,故平面在直角梯形中,,且,∴四邊形是平行四邊形,,同理平面又,故平面平面,又平面平面.(2)是圓的直徑,點是圓上異于、的一點,又∵平面平面,平面平面平面,可得是三棱錐的高線.在直角梯形中,.設到平面的距離為,則,即由已知得,由余弦定理易知:,則解得,即點到平面的距離為故答案為:.【點睛】考查線面平行的判定和利用等體積法求距離的方法,是中檔題.20、(1);(2)【解析】
(1)根據(jù)已知可得數(shù)列為等比數(shù)列,即可求解;(2)由(1)可得為等比數(shù)列,根據(jù)等比數(shù)列和等差數(shù)列的前項和公式,即可求解.【詳解】(1)因為,所以,又所以數(shù)列為等比數(shù)列,且首項為,公比為.故(2)由(1)知,所以所以【點睛】本題考查等比數(shù)列的定義及通項公式、等差數(shù)列和等比數(shù)列的前項和,屬于基礎題.21、(Ⅰ)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(Ⅱ).【解析】
(Ⅰ)對函數(shù)進行求導,利用導數(shù)判斷函數(shù)的單調(diào)性即可;(Ⅱ)對函數(shù)進行求導,由題意知,為增函數(shù)等價于在區(qū)間恒成立,利用分離參數(shù)法和基本不等式求最值即可求出實數(shù)的取值范圍.【詳解】(Ⅰ)由題意知,函數(shù)的定義域為,當時,,令,得,或,所以,隨的變化情況如下表:遞增遞減遞增的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為.(Ⅱ)由題意得在區(qū)間恒成立,即在區(qū)間恒成立.,當且僅當,即時等號成立.所以,所以的取值范圍是.【點睛】本題考查利用導數(shù)求函數(shù)的單調(diào)區(qū)間、利用分離參數(shù)法和基本不等式求最值求參數(shù)的取值范圍;考查運算求解能力和邏輯推理能力;利用導數(shù)把函數(shù)單調(diào)性問題轉化為不等式恒成立問題是求解本題的關鍵;屬于中檔題、??碱}型.22、(1)1(2)【解析】
(1)求得和,由,,得,令,令導數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導數(shù)求得的單調(diào)性,轉化為,令()
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山東壽光市事業(yè)單位公開招聘工作人員35人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 機械課程設計搞笑
- 年會員工代表發(fā)言稿(15篇)
- 電網(wǎng)課程設計劉桂英
- 2025年山東威海市數(shù)字城管運行服務項目人員招聘11人管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東土地東方發(fā)展集團限公司招聘13人管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東臨沂市蒙陰縣文旅局文旅集團招聘派遣工作人員11人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東臨沂大學招聘12人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東東營市城市建設投資集團限公司所屬企業(yè)招聘14人管理單位筆試遴選500模擬題附帶答案詳解
- 2024年度鋁錠原材料供應鏈管理合同3篇
- 2024年公司年會領導演講稿致辭(5篇)
- 2024北京通州初三(上)期末數(shù)學試卷(含答案解析)
- 市場營銷習題庫(附參考答案)
- 重大事項內(nèi)部會審制度例文(2篇)
- 貴州省銅仁市碧江區(qū)2023-2024學年八年級上學期期末數(shù)學試題
- 大部分分校:地域文化形考任務二-國開(CQ)-國開期末復習資料
- 2024年馬拉松比賽項目合作計劃書
- 苗圃購銷合同范本
- ICU患者跌倒、墜床應急預案及防范措施
- 電力監(jiān)控系統(tǒng)安全防護總體方案
- 爐渣爐灰采購合同模板
評論
0/150
提交評論