版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年河南省鶴壁市??h第二高級(jí)中學(xué)高三最后一卷數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.我國古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個(gè)問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.12.我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想的內(nèi)容是:每個(gè)大于2的偶數(shù)都可以表示為兩個(gè)素?cái)?shù)的和,例如:,,,那么在不超過18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù),其和等于16的概率為()A. B. C. D.3.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.34.已知斜率為的直線與雙曲線交于兩點(diǎn),若為線段中點(diǎn)且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B.3 C. D.5.過雙曲線的左焦點(diǎn)作直線交雙曲線的兩天漸近線于,兩點(diǎn),若為線段的中點(diǎn),且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B. C. D.6.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或87.某工廠利用隨機(jī)數(shù)表示對(duì)生產(chǎn)的600個(gè)零件進(jìn)行抽樣測試,先將600個(gè)零件進(jìn)行編號(hào),編號(hào)分別為001,002,……,599,600.從中抽取60個(gè)樣本,下圖提供隨機(jī)數(shù)表的第4行到第6行:若從表中第6行第6列開始向右讀取數(shù)據(jù),則得到的第6個(gè)樣本編號(hào)是()A.324 B.522 C.535 D.5788.設(shè)實(shí)數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.49.設(shè),命題“存在,使方程有實(shí)根”的否定是()A.任意,使方程無實(shí)根B.任意,使方程有實(shí)根C.存在,使方程無實(shí)根D.存在,使方程有實(shí)根10.不等式的解集記為,有下面四個(gè)命題:;;;.其中的真命題是()A. B. C. D.11.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個(gè)數(shù)為()A.1 B.2C.3 D.412.在滿足,的實(shí)數(shù)對(duì)中,使得成立的正整數(shù)的最大值為()A.5 B.6 C.7 D.9二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在正三棱柱中,是的中點(diǎn),,則異面直線與所成的角為____.14.記為數(shù)列的前項(xiàng)和.若,則______.15.命題“對(duì)任意,”的否定是.16.已知數(shù)列{an}的前n項(xiàng)和為Sn,向量(4,﹣n),(Sn,n+3).若⊥,則數(shù)列{}前2020項(xiàng)和為_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線交于兩點(diǎn).(1)求的長;(2)在以為極點(diǎn),軸的正半軸為極軸建立的極坐標(biāo)系中,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)到線段中點(diǎn)的距離.18.(12分)如圖,在四棱錐中,平面,,為的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.19.(12分)某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產(chǎn)品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內(nèi)原有一個(gè)以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎(chǔ)上,將其改建成一個(gè)凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點(diǎn).已知長為40米,設(shè)為.(上述圖形均視作在同一平面內(nèi))(1)記四邊形的周長為,求的表達(dá)式;(2)要使改建成的展示區(qū)的面積最大,求的值.20.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點(diǎn),.(1)求線段的長.(2)若為線段上一點(diǎn),且,求二面角的余弦值.21.(12分)已知函數(shù)為實(shí)數(shù))的圖像在點(diǎn)處的切線方程為.(1)求實(shí)數(shù)的值及函數(shù)的單調(diào)區(qū)間;(2)設(shè)函數(shù),證明時(shí),.22.(10分)已知函數(shù).(1)若對(duì)任意x0,f(x)0恒成立,求實(shí)數(shù)a的取值范圍;(2)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2(x1x2),證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
將問題轉(zhuǎn)化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實(shí)際問題可以轉(zhuǎn)化為等比數(shù)列問題,在等比數(shù)列中,公比,前項(xiàng)和為,,,求的值.因?yàn)?,解得,,解得.故選B.【點(diǎn)睛】本題考查等比數(shù)列的實(shí)際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計(jì)算,對(duì)于解決實(shí)際問題很有幫助.2、B【解析】
先求出從不超過18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù)的所有可能結(jié)果,然后再求出其和等于16的結(jié)果,根據(jù)等可能事件的概率公式可求.【詳解】解:不超過18的素?cái)?shù)有2,3,5,7,11,13,17共7個(gè),從中隨機(jī)選取兩個(gè)不同的數(shù)共有,其和等于16的結(jié)果,共2種等可能的結(jié)果,故概率.故選:B.【點(diǎn)睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),本題不可以列舉出所有事件但可以用分步計(jì)數(shù)得到,屬于基礎(chǔ)題.3、B【解析】
由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點(diǎn)睛】本題考查奇偶性在抽象函數(shù)中的應(yīng)用,考查學(xué)生分析問題的能力,難度較易.4、B【解析】
設(shè),代入雙曲線方程相減可得到直線的斜率與中點(diǎn)坐標(biāo)之間的關(guān)系,從而得到的等式,求出離心率.【詳解】,設(shè),則,兩式相減得,∴,.故選:B.【點(diǎn)睛】本題考查求雙曲線的離心率,解題方法是點(diǎn)差法,即出現(xiàn)雙曲線的弦中點(diǎn)坐標(biāo)時(shí),可設(shè)弦兩端點(diǎn)坐標(biāo)代入雙曲線方程相減后得出弦所在直線斜率與中點(diǎn)坐標(biāo)之間的關(guān)系.5、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點(diǎn),∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點(diǎn)睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時(shí)涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對(duì)于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).6、B【解析】
根據(jù)函數(shù)的對(duì)稱軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關(guān)于對(duì)稱,又,所以或,所以的值是7或3.故選:B.【點(diǎn)睛】本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對(duì)稱性問題,屬基礎(chǔ)題7、D【解析】
因?yàn)橐獙?duì)600個(gè)零件進(jìn)行編號(hào),所以編號(hào)必須是三位數(shù),因此按要求從第6行第6列開始向右讀取數(shù)據(jù),大于600的,重復(fù)出現(xiàn)的舍去,直至得到第六個(gè)編號(hào).【詳解】從第6行第6列開始向右讀取數(shù)據(jù),編號(hào)內(nèi)的數(shù)據(jù)依次為:,因?yàn)?35重復(fù)出現(xiàn),所以符合要求的數(shù)據(jù)依次為,故第6個(gè)數(shù)據(jù)為578.選D.【點(diǎn)睛】本題考查了隨機(jī)數(shù)表表的應(yīng)用,正確掌握隨機(jī)數(shù)表法的使用方法是解題的關(guān)鍵.8、C【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當(dāng)x+y=2時(shí),且x∈-13,1時(shí),故選:C.【點(diǎn)睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.9、A【解析】
只需將“存在”改成“任意”,有實(shí)根改成無實(shí)根即可.【詳解】由特稱命題的否定是全稱命題,知“存在,使方程有實(shí)根”的否定是“任意,使方程無實(shí)根”.故選:A【點(diǎn)睛】本題考查含有一個(gè)量詞的命題的否定,此類問題要注意在兩個(gè)方面作出變化:1.量詞,2.結(jié)論,是一道基礎(chǔ)題.10、A【解析】
作出不等式組表示的可行域,然后對(duì)四個(gè)選項(xiàng)一一分析可得結(jié)果.【詳解】作出可行域如圖所示,當(dāng)時(shí),,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點(diǎn)睛】此題考查命題的真假判斷與應(yīng)用,著重考查作圖能力,熟練作圖,正確分析是關(guān)鍵,屬于中檔題.11、D【解析】可以是共4個(gè),選D.12、A【解析】
由題可知:,且可得,構(gòu)造函數(shù)求導(dǎo),通過導(dǎo)函數(shù)求出的單調(diào)性,結(jié)合圖像得出,即得出,從而得出的最大值.【詳解】因?yàn)?,則,即整理得,令,設(shè),則,令,則,令,則,故在上單調(diào)遞增,在上單調(diào)遞減,則,因?yàn)?,,由題可知:時(shí),則,所以,所以,當(dāng)無限接近時(shí),滿足條件,所以,所以要使得故當(dāng)時(shí),可有,故,即,所以:最大值為5.故選:A.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求函數(shù)單調(diào)性、極值和最值,以及運(yùn)用構(gòu)造函數(shù)法和放縮法,同時(shí)考查轉(zhuǎn)化思想和解題能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
要求兩條異面直線所成的角,需要通過見中點(diǎn)找中點(diǎn)的方法,找出邊的中點(diǎn),連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點(diǎn)E,連AE,,易證,∴為異面直線與所成角,設(shè)等邊三角形邊長為,易算得∴在∴故答案為【點(diǎn)睛】本題考查異面直線所成的角,本題是一個(gè)典型的異面直線所成的角的問題,解答時(shí)也是應(yīng)用典型的見中點(diǎn)找中點(diǎn)的方法,注意求角的三個(gè)環(huán)節(jié),一畫,二證,三求.14、1【解析】
由已知數(shù)列遞推式可得數(shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,再由等比數(shù)列的前項(xiàng)和公式求解.【詳解】由,得,.且,則,即.?dāng)?shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,則.故答案為:1.【點(diǎn)睛】本題主要考查數(shù)列遞推式,考查等比數(shù)列的前項(xiàng)和,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.15、存在,使得【解析】試題分析:根據(jù)命題否定的概念,可知命題“對(duì)任意,”的否定是“存在,使得”.考點(diǎn):命題的否定.16、【解析】
由已知可得?4Sn﹣n(n+3)=0,可得Sn,n=1時(shí),a1=S1=1.當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1.可得:2().利用裂項(xiàng)求和方法即可得出.【詳解】∵⊥,∴?4Sn﹣n(n+3)=0,∴Sn,n=1時(shí),a1=S1=1.當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1.,滿足上式,.∴2().∴數(shù)列{}前2020項(xiàng)和為2(1)=2(1).故答案為:.【點(diǎn)睛】本題考查了向量垂直與數(shù)量積的關(guān)系、數(shù)列遞推關(guān)系、裂項(xiàng)求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)將直線的參數(shù)方程化為直角坐標(biāo)方程,由點(diǎn)到直線距離公式可求得圓心到直線距離,結(jié)合垂徑定理即可求得的長;(2)將的極坐標(biāo)化為直角坐標(biāo),將直線方程與圓的方程聯(lián)立,求得直線與圓的兩個(gè)交點(diǎn)坐標(biāo),由中點(diǎn)坐標(biāo)公式求得的坐標(biāo),再根據(jù)兩點(diǎn)間距離公式即可求得.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),化為直角坐標(biāo)方程為,即直線與曲線交于兩點(diǎn).則圓心坐標(biāo)為,半徑為1,則由點(diǎn)到直線距離公式可知,所以.(2)點(diǎn)的極坐標(biāo)為,化為直角坐標(biāo)可得,直線的方程與曲線的方程聯(lián)立,化簡可得,解得,所以兩點(diǎn)坐標(biāo)為,所以,由兩點(diǎn)間距離公式可得.【點(diǎn)睛】本題考查了參數(shù)方程與普通方程轉(zhuǎn)化,極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化,點(diǎn)到直線距離公式應(yīng)用,兩點(diǎn)間距離公式的應(yīng)用,直線與圓交點(diǎn)坐標(biāo)求法,屬于基礎(chǔ)題.18、(1)見解析;(2)【解析】
(1)取的中點(diǎn),連接,根據(jù)中位線的方法證明四邊形是平行四邊形.再證明與從而證明平面,從而得到平面即可.(2)以所在的直線為軸建立空間直角坐標(biāo)系,再求得平面的法向量與平面的法向量進(jìn)而求得二面角的余弦值即可.【詳解】(1)證明:如圖,取的中點(diǎn),連接.又為的中點(diǎn),則是的中位線.所以且.又且,所以且.所以四邊形是平行四邊形.所以.因?yàn)?為的中點(diǎn),所以.因?yàn)?所以.因?yàn)槠矫?所以.又,所以平面.所以.又,所以平面.又,所以平面.(2)易知兩兩互相垂直,所以分別以所在的直線為軸建立如圖所示的空間直角坐標(biāo)系:因?yàn)?所以點(diǎn).則.設(shè)平面的法向量為,由,得,令,得平面的一個(gè)法向量為;顯然平面的一個(gè)法向量為;設(shè)二面角的大小為,則.故二面角的余弦值是.【點(diǎn)睛】本題主要考查了線面垂直的證明以及建立空間直角坐標(biāo)系求解二面角的問題,需要用到線線垂直與線面垂直的轉(zhuǎn)換以及法向量的求法等.屬于中檔題.19、(1),.(2)【解析】
(1)由余弦定理的,然后根據(jù)直線與圓相切的性質(zhì)求出,從而求出;(2)求得的表達(dá)式,通過求導(dǎo)研究函數(shù)的單調(diào)性求得最大值.【詳解】解:(1)連.由條件得.在三角形中,,,,由余弦定理,得,因?yàn)榕c半圓相切于,所以,所以,所以.所以四邊形的周長為,.(2)設(shè)四邊形的面積為,則,.所以,.令,得列表:+0-增最大值減答:要使改建成的展示區(qū)的面積最大,的值為.【點(diǎn)睛】本題考查余弦定理、直線與圓的位置關(guān)系、導(dǎo)數(shù)與函數(shù)最值的關(guān)系,考查考生的邏輯思維能力,運(yùn)算求解能力,以及函數(shù)與方程的思想.20、(1)的長為4(2)【解析】
(1)分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,設(shè),根據(jù)向量垂直關(guān)系計(jì)算得到答案.(2)計(jì)算平面的法向量為,為平面的一個(gè)法向量,再計(jì)算向量夾角得到答案.【詳解】(1)分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系.設(shè),則,所以.,因?yàn)椋?,即,解得,所以的長為4.(2)因?yàn)?,所以,又,?設(shè)為平面的法向量,則即取,解得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版房屋買賣合同中的房屋抵押及解押約定3篇
- 二零二五河南事業(yè)單位100人招聘項(xiàng)目合同執(zhí)行標(biāo)準(zhǔn)3篇
- 二零二五版建筑工程項(xiàng)目現(xiàn)場勘察與監(jiān)測服務(wù)合同3篇
- 二零二五版混凝土結(jié)構(gòu)防雷接地施工合同2篇
- 二零二五年度草場承包管理與開發(fā)合同范本3篇
- 二零二五版國際貿(mào)易實(shí)務(wù)實(shí)驗(yàn)報(bào)告與國際貿(mào)易實(shí)務(wù)實(shí)訓(xùn)合同3篇
- 二零二五年度虛擬現(xiàn)實(shí)(VR)技術(shù)研發(fā)合同3篇
- 二零二五年度特種貨物安全運(yùn)輸服務(wù)合同范本2篇
- 二零二五年度體育設(shè)施建設(shè)與運(yùn)營管理復(fù)雜多條款合同3篇
- 二零二五年度電梯門套安裝與安全性能檢測合同3篇
- 山東省濰坊市2023-2024學(xué)年高二下學(xué)期期末考試 歷史 含解析
- 中醫(yī)診療規(guī)范
- 報(bào)建協(xié)議書模板
- 第14課《葉圣陶先生二三事》導(dǎo)學(xué)案 統(tǒng)編版語文七年級(jí)下冊
- 貴州省2024年中考英語真題(含答案)
- 施工項(xiàng)目平移合同范本
- 北師大版八年級(jí)上冊數(shù)學(xué)期中綜合測試卷(含答案解析)
- 幼兒園創(chuàng)意美勞培訓(xùn)
- 同濟(jì)大學(xué)第四版線性代數(shù)課后習(xí)題答案
- 醫(yī)療領(lǐng)域人工智能技術(shù)應(yīng)用的倫理與法規(guī)
- 工地春節(jié)停工復(fù)工計(jì)劃安排
評(píng)論
0/150
提交評(píng)論