版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年山東省煙臺市福山區(qū)七年級(下)期末數(shù)學(xué)試卷
(五四學(xué)制)
1.下列說法中,正確的是()
A.隨機(jī)事件發(fā)生的概率為:B.不可能事件發(fā)生的概率為0
C.概率很小的事件不可能發(fā)生D.“概率為0.0001的事件”是不可能事件
2.如圖,zl,z2,43的大小關(guān)系正確的是()
A.zl=42+43
B.242=41+43
C.43>42>Z.1
D.Z.1>Z2>43
3.將一個小球在如圖所示的正六邊形地板上自由滾動,小球隨機(jī)
停在正六邊形地板內(nèi)的某一點上.若小球停在陰影部分的概率為Pi,
停在空白部分的概率為尸2,則匕與P2的大小關(guān)系為()
A.Pi<P2
B.P、=P2
C.Pi>P2
D.無法判斷
4.不等式組的解集在數(shù)軸上表示正確的是()
?????11?
-3-2-01234
5.下列命題是真命題的是()
A.全等三角形對應(yīng)邊上的中線相等
B.兩邊分別相等的兩個等腰三角形全等
C.兩邊分別相等的兩個直角三角形全等
D.如果一個銳角等于30。,那么它所對的邊等于最長邊的一半
6.如圖,有一張三角形紙片ABC,已知4B=NC=X。,按下列方案用剪刀沿著箭頭方向剪
開,可能得不到全等三角形紙片的是()
7.在同一平面直角坐標(biāo)系中,直線y=-x+4與y=2x+Tn相交于點P(3,n),則關(guān)于x,y
的方程組的解為()
A」;:”B/;?"二
8.數(shù)形結(jié)合是解決數(shù)學(xué)問題常用的思想方法.如圖,一次函數(shù)、=kx+b(k、匕為常數(shù),且
k<0)的圖象與直線y=gx都經(jīng)過點4(3,1),當(dāng)+寸,根據(jù)圖象可知,x的取值范
圍是()
A.%>3B.%<3C.%<1D.%>1
9.吳老師家、公園、學(xué)校依次在同一條直線上,家到公園、公園到學(xué)校的距離分別為400機(jī),
600m他從家出發(fā)勻速步行8min到公園后,停留4min,然后勻速步行6min到學(xué)校.設(shè)吳老師
離公園的距離為y(單位:m),所用時間為雙單位:min),則下列表示y與x之間函數(shù)關(guān)系的
圖象中,正確的是()
10.我國古代《算法統(tǒng)宗》里有這樣一首詩:“我問開店李三公,眾客都來到店中,一房七
客多七客,一房九客一房空.”詩中后面兩句的意思是:如果一間客房住7人,那么有7人
無房可??;如果一間客房住9人,那么就空出一間客房,若設(shè)該店有客房x間,房客〉人,
則列出關(guān)于x,y的二元一次方程組正確的是()
(7x-7=y(7x+7=y(7x+7=y(7x-7=y
(9(x-1)=y(9(x-1)=y(9%-1=y19x-1=y
11.桂林作為國際旅游名城,每年吸引著大量游客前來觀光.現(xiàn)有一批游客分別乘坐甲乙兩
輛旅游大巴同時從旅行社前往某個旅游景點.行駛過程中甲大巴因故停留一段時間后繼續(xù)駛
向景點,乙大巴全程勻速駛向景點.兩輛大巴的行程s(km)隨時間t(/i)變化的圖象(全程)如圖
所示.依據(jù)圖中信息,下列說法錯誤的是()
A.甲大巴比乙大巴先到達(dá)景點B.甲大巴中途停留了0.5人
C.甲大巴停留后用1.5/1追上乙大巴D.甲大巴停留前的平均速度是60k?n//i
12.如圖,在RtUBC中,ZC=90\NB4C的平分線交BC
于點。,DE//AB,交AC于點E,0F14B于點凡DE=5,
DF=3,則下列結(jié)論錯誤的是()
AB
A.fiF=1B.DC=3C.AE=5D.AC=9
13.從分別標(biāo)有數(shù)-3,-2,-1,0,1,2,3的七張卡片中,隨機(jī)抽取一張,所抽卡片上數(shù)
的絕對值小于2的概率是.
14.如果兩數(shù)x,y滿足那么x-y=.
15.某品牌護(hù)眼燈的進(jìn)價為240元,商店以320元的價格出售.“五一節(jié)”
期間,商店為讓利于顧客,計劃以利潤率不低于20%的價格降價出售,則該
護(hù)眼燈最多可降價______元.、
16.如圖,在△ABC中,AB=5,4C=4,BC=3,以A為圓心,任意長為半徑作弧,分
別交AB,AC于點M和N,分別以M和N為圓心,以大于;MN的長為半徑作弧,兩弧相交
于點E,作射線AE,以同樣的方式作射線8凡AE和8尸交于點O,則乙4OB的度數(shù)是
17.如圖,在平面直角坐標(biāo)系中,點A坐標(biāo)為(一12,5),過點A作4B_Lx軸于8,C是x軸
負(fù)半軸上一動點,。是y軸正半軸上一動點,且始終保持CO=。4,則當(dāng)點。坐標(biāo)為時,
△43。與40CD全等.
18.如圖,和C4分別是△ABC的內(nèi)角平分線和外角平分線,84乙1/。的角平分線,C4
是N&C。的角平分線,是N4BD的角平分線,是乙的CD的角平分線,若N4=a,則
△“2023=-------------?
19.(1)解方程組:34~1;
(3%-4y=2
r4x—223(x—1)
(2)解不等式組x-5,1I°,將解集在數(shù)軸上表示出來,并寫出不等式組的整數(shù)解.
(_+l>x_3
20.在一個不透明的袋子中裝有4個紅球和6個白球,每個球除顏色外其余都相同.
(1)從中任意摸出1個球,摸到球的可能性大;
(2)摸出紅球和白球的概率分別是多少?
(3)如果另拿紅球和白球共8個放入袋中并攪勻,使得從中任意摸出1個球,摸到紅球和白球
的可能性大小相等,那么應(yīng)放入個紅球,個白球.
21.如圖,8。是AABC的角平分線,DE//BC,交AB于點E.
⑴求證:乙EBD=乙EDB.
(2)當(dāng)AB=AC時,請判斷8與EQ的大小關(guān)系,并說明理由.
22.因疫情防控需要,一輛貨車先從甲地出發(fā)運送防疫物資到乙地,稍后一輛轎車從甲地急
送防疫專家到乙地.已知甲、乙兩地的路程是330k”,貨車行駛時的速度是60krn//i.兩車離
甲地的路程S(/CTH)與時間t(/l)的函數(shù)圖象如圖.
(1)求出〃的值;
(2)求轎車離甲地的路程s(km)與時間t(h)的函數(shù)表達(dá)式;
(3)問轎車比貨車早多少時間到達(dá)乙地?
23.某校為了普及推廣冰雪活動進(jìn)校園,準(zhǔn)備購進(jìn)速滑冰鞋和花滑冰鞋用于開展冰上運動,
若購進(jìn)30雙速滑冰鞋和20雙花滑冰鞋共需8500元;若購進(jìn)40雙速滑冰鞋和10雙花滑冰鞋
共需8000元.
(1)求速滑冰鞋和花滑冰鞋每雙購進(jìn)價格分別為多少元?
(2)若該校購進(jìn)花滑冰鞋的數(shù)量比購進(jìn)速滑冰鞋數(shù)量的2倍少10雙,且用于購置兩種冰鞋的
總經(jīng)費不超過9000元,則該校至多購進(jìn)速滑冰鞋多少雙?
24.如圖,直線小y=2x+m經(jīng)過點(一3,-2),且與x軸,),軸分別交于點B,點A;直線
/2:y=kx+b經(jīng)過點(2,-2),且與x軸交于點。(6,0),與y軸交于點C.兩直線相交于點P.
(1)求直線%,%的解析式;
(2)求SMCP:SMCD的值.
(1)如圖1,寫出NBED與4D的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖2,4DEF=2乙BEF,乙CDF=;4CDE,EF與OF交于點凡求4EFD的度數(shù).
26.如圖,△ABC和AAOE均為等邊三角形,A,D,C在同一條直線上,連接8。,CE,點
M,N分別為8。,CE的中點,順次連接A,M,N.
(1)求證:BD=CE-.
(2)判斷A/IMN的形狀,并說明理由.
答案和解析
1.【答案】B
【解析】解:4隨機(jī)事件發(fā)生的概率視不同的隨機(jī)事件而確定,故此選項不符合題意;
B.不可能事件發(fā)生的概率為0,故此選項符合題意;
C.概率很小的事件不是不可能發(fā)生,而是發(fā)生的機(jī)會較小,故此選項不符合題意;
D”概率為0.0001的事件”是概率很小的事件,概率很小的事件不是不可能發(fā)生,而是發(fā)生的機(jī)
會較小,故此選項不符合題意:
故選:B.
根據(jù)隨機(jī)事件的概率對A判定;根據(jù)不可能發(fā)生事件的概率P(不可能事件)=0對B進(jìn)行判定;根
據(jù)頻率的意義對C、。進(jìn)行判定.
本題考查了概率的意義:一般地,在大量重復(fù)實驗中,如果事件A發(fā)生的頻率〃?會穩(wěn)定在某個常
數(shù)P附近,那么這個常數(shù)p就叫做事件A的概率;概率是頻率(多個)的波動穩(wěn)定值,是對事件發(fā)
生可能性大小的量的表現(xiàn).必然發(fā)生的事件的概率P(必然事件)=1;不可能發(fā)生事件的概率P(不
可能事件)=0.
2.【答案】D
【解析】解:由三角形的外角大于與它不相鄰的每一個內(nèi)角,可得41、42、/3的大小關(guān)系為:
Z.1>Z2>Z.3.
故選:D.
根據(jù)三角形的外角的性質(zhì)進(jìn)行解題.
本題考查三角形外角的性質(zhì),掌握三角形的外角的性質(zhì)是解題的關(guān)鍵.
3.【答案】B
【解析】解:由圖可知,陰影部分的面積與空白部分的相等,各占六邊形面積的今
11
P1=2)「2=2*
???P]=P2
故選:B.
先根據(jù)正六邊形的性質(zhì)知陰影部分的面積與空白部分的相等,再根據(jù)其面積占六邊形面積的比值,
即可得出結(jié)論.
本題考查的是幾何概率,用到的知識點為:幾何概率=相應(yīng)的面積與總面積之比.
4.【答案】A
,A,?,3m+4>1①
【RT解E2I析R】解:{,二、
解不等式①得:m>-l,
解不等式②得:m<3,
???不等式組的解集為—1<m<3,
在數(shù)軸上表示為:
-3-2-101234
故選:A.
利用不等式的性質(zhì)求出不等式組中的每一個不等式的解集,分別在數(shù)軸上表示出來,尋求所有解
的公共部分.
本題考查了解一元一次不等式組:先分別解幾個不等式,然后把它們的解集的公共部分作為原不
等式的解集;按照“同大取大,同小取小,大于小的小于大的取中間,大于小的小于大的為空
集”.也考查了利用數(shù)軸表示不等式的解集.
5.【答案】A
【解析】解:4全等三角形對應(yīng)邊上的中線相等是真命題,故此選項符合題意;
8、兩邊分別相等的兩個等腰三角形全等是假命題,故此選項不符合題意;
C、兩邊分別相等的兩個直角三角形全等是假命題,故此選項不符合題意;
。、如果一個銳角等于30。,那么它所對的邊等于最長邊的一半是假命題,故此選項不符合題意;
故選:A.
根據(jù)全等三角形的性質(zhì)判定A;根據(jù)兩邊分別相等的兩個等腰三角形不一定全等判定8;兩邊分
別相等的兩個直角三角形全等不一定全等判定C;根據(jù)在直角三角形中,如果一個銳角等于30。,
那么它所對的邊等于斜邊的一半判定D
本題考查命題真假的判定,熟練掌握判定一個命題是假命題,可以舉反例.
6.【答案】C
【解析】根據(jù)全等三角形的判定定理進(jìn)行判斷.
解:A、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,
故本選項不符合題意;
B、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,
故本選項不符合題意;
C、如圖1,,??4DEC=4B+4BDE,
:,x°+Z.FEC=x°+4BDE,
:.Z-FEC=乙BDE,
所以其對應(yīng)邊應(yīng)該是BE和CR而已知給的是BD=FC=3,
所以不能判定兩個小三角形全等,故本選項符合題意;
D、如圖2,?:乙DEC=£B+乙BDE,
:.x°+Z.FEC=%°+乙BDE,
:.Z-FEC=乙BDE,
???BD=EC=2,乙B=Z.C,
在和中,
2B=ZC
BD=CE
ZBDE=Z.CEF
???△B0E"C£T(4S4),
所以能判定兩個小三角形全等,故本選項不符合題意;
由于本題選擇可能得不到全等三角形紙片的圖形,
故選:C.
本題考查了全等三角形的判定,注意三角形邊和角的對應(yīng)關(guān)系是關(guān)鍵.
7.【答案】C
【解析】解:將點P(3,TT)代入y=-x+4,
得n=-3+4=1,
???P(3,l),
???關(guān)于居),的方程組5的解為{;:t
故選:C.
先將點P代入y=—x+4,求出〃,即可確定方程組的解.
本題考查了一次函數(shù)與二元一次方程組的關(guān)系,求出兩直線的交點坐標(biāo)是解題的關(guān)鍵.
8.【答案】A
【解析】解:由圖象可得,
當(dāng)x>3時,直線y=gx在一次函數(shù)y=kx+b的上方,
二當(dāng)kx+b<gx時,x的取值范圍是x>3,
故選:A.
根據(jù)題意和函數(shù)圖象,可以寫出當(dāng)kx+b<gx時,x的取值范圍.
本題考查一次函數(shù)與一元一次不等式之間的關(guān)系,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的
思想解答.
9.【答案】C
【解析】解:吳老師從家出發(fā)勻速步行8min到公園,則),的值由400變?yōu)?,
吳老師在公園停留4min,則y的值仍然為0,
吳老師從公園勻速步行6min到學(xué)校,則在18分鐘時,y的值為600,
故選:C.
在不同時間段中,找出y的值,即可求解.
本題考查了函數(shù)的圖象,利用數(shù)形結(jié)合思想解決問題是解題的關(guān)鍵.
10.【答案】B
【解析】
【分析】
本題考查了由實際問題抽象出二元一次方程組,根據(jù)題意得出方程組是解決問題的關(guān)鍵.
設(shè)該店有客房x間,房客y人,根據(jù)“一房七客多七客,一房九客一房空”得出方程組即可.
【解答】
解:設(shè)該店有客房x間,房客y人,
根據(jù)題意得:
故選:B.
11.【答案】C
【解析】解:由圖象可得,
甲大巴比乙大巴先到達(dá)景點,故選項4正確,不符合題意;
甲大巴中途停留了1-0.5=0.5(h),故選項B正確,不符合題意;
甲大巴停留后用1.5-1=0.5%追上乙大巴,故選項C錯誤,符合題意;
甲大巴停留前的平均速度是30+0.5=60(后71〃),故選項O正確,不符合題意;
故選:C.
根據(jù)函數(shù)圖象中的數(shù)據(jù),可以判斷各個選項中的結(jié)論是否成立,從而可以解答本題.
本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.
12.【答案】A
【解析】解:???AD平分ABAC,ZC=90°,DFLAB,
Z1=Z2,DC=DF=3,ZC=4DFB=90°,
vDE//AB,
???z2=z3>
???zl=z_3,
AE=DE=5,
故選項8、C正確;
CE=VDE2-CD2=752-32=4,
???AC=AE+CE=5+4=9,故選項D正確;
故選:A.
根據(jù)角平分線的性質(zhì)和和勾股定理,可以求得和CE的長,再根據(jù)平行線的性質(zhì),即可得到
AE的長,從而可以判斷8和C,然后即可得到AC的長,即可判斷力;從而可得到答案.
本題考查勾股定理、全等三角形的判定和性質(zhì)、等腰三角形的性質(zhì)、角平分線的性質(zhì),解答本題
的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.
13.【答案】|
【解析】解:?.?寫有數(shù)字一3、一2、一1、0、1、2、3、的七張一樣的卡片中,數(shù)字的絕對值小于2
的有一1、0,1,
???任意抽取一張卡片,所抽卡片上數(shù)字的絕對值小于2的概率是:方
故答案為:%
根據(jù)寫有數(shù)字一3、-2、-1、0、1、2、3、的七張一樣的卡片中,數(shù)字的絕對值小于2的有-1、
0、1,直接利用概率公式求解即可求得答案.
本題主要考查了絕對值的性質(zhì)以及概率公式等知識,正確得出絕對值小于2的數(shù)個數(shù)和正確運用
概率公式是解題的關(guān)鍵.
14.【答案】2
【解析】解:、=露,
3x+zy=11(2;
②-①得:x-y=2,
故答案為:2.
直接用②-①即可進(jìn)行解答.
本題主要考查了解二元一次方程組,解題的關(guān)鍵是掌握用加減消元法解二元一次方程組的方法和
步驟.
15.【答案】32
【解析】解:設(shè)該護(hù)眼燈可降價x元,
根據(jù)題意,得*J。。%220%,
240
解得xW32,
故答案為:32.
設(shè)該護(hù)眼燈可降價x元,根據(jù)“以利潤率不低于20%的價格降價出售”列一元一次不等式,求解
即可.
本題考查了一元一次不等式的應(yīng)用,理解題意并根據(jù)題意建立一元一次不等式是解題的關(guān)鍵.
16.【答案】135°
【解析】解:TAB=5,AC=4,BC=3,
AC2+BC2=AB2,
???△ABC為直角三角形,/-ACB=90°,
由作法得OA平分上BAC,OB平分/ABC,
40AB=Z.OBA=
???Z.AOB=180°-/.OAB-NOBA
1
=180°--^BAC+乙ABC)
1
=180°-2(180°-Z71CB)
1
=90°+產(chǎn)ACB
1
=90。+/90。
=135°.
故答案為:135。.
先利用勾股定理的逆定理證明△ABC為直角三角形,AACB=90°,再利用基本作圖得到4OAB=
*B4C,AOBA=^AABC,然后根據(jù)三角形內(nèi)角和得至此AOB=90°+gNACB.
本題考查了作圖-基本作圖:熟練掌握5種基本作圖是解決問題的關(guān)鍵.也考查了勾股定理的逆定
理和三角形內(nèi)角和定理.
17.【答案】(0,12)或(0,5)
【解析】解:???4B1X軸于8,A坐標(biāo)為(-12,5),
???AABO=90°,0B=12,AB=5,
???乙COD=90°,
.,?當(dāng)0D=0B時,即0。=12,△ABO^^COD(HL),
此時點。的坐標(biāo)為(0,12),
當(dāng)OD=AB時,即。。=5,△力B。g△DOC(HL),
此時點。的坐標(biāo)為(0,5),
綜上所述,點。的坐標(biāo)為(0,12)或(0,5)時,△43。與40。。全等.
故答案為:(0,12)或(0,5).
根據(jù)直角三角形全等的判定方法,當(dāng)OD=。8時,即OD=12,△43。且4。。?;虍?dāng)0£>=43時,
即OD=5,xABOdDOCHL,然后寫出對應(yīng)的點。的坐標(biāo).
本題考查了全等三角形的判定:熟練掌握全等三角形的5種判定方法是解決問題的關(guān)鍵;選用哪
一種方法,取決于題目中的已知條件.也考查了坐標(biāo)與圖形性質(zhì).
18.【答案】^2C23a
【解析】解:???B4和C①分別是△4BC的內(nèi)角平分線和外角平分線,
又丁Z-ACD=Z.ABC+Z-A,乙A、CD=乙A$D+Z-Alf
:.1{/.ABC+44)=g^ABC+
*,4?—1Z-A4.,
ii
同理可得:乙的=2Z^1=
“1,
443=/44,….
則4023=黃花乙4,
"/.A=a,
_1
"Zyl2023=22023a-
故答案為:^23a-
根據(jù)角平分線的定義可得乙4道。=:乙4BC,乙4道。="乙4C。,再根據(jù)三角形外角的性質(zhì)可得
XNABC+乙4)=;N4BC+S,化簡可得=;〃,進(jìn)一步找出其中的規(guī)律,即可求出乙42023
的度數(shù).
本題考查了三角形的內(nèi)角和定理,三角形外角的性質(zhì),角平分線的定義等,找出〃2,乙名與
44的規(guī)律是解題的關(guān)鍵.
19.【答案】解:(1)整理得{差-3:二先,
3%-4y=2(2)
3x①一4x②得:7y=28,即y=4.
將y=4代入①得:x=6,
所以方程組的解為z4:
4x-2>3(x-1)①
(2){x—51
—+d1>x-3(2)
解不等式①得:%>-l.
解不等式②得:x<3.
??.原不等式組的解集為:—l〈x<3.
將不等式組的解集表示在數(shù)軸上,如圖
-5-4-3-2-I0123
???不等式組的整數(shù)解是-1,0,1,2.
【解析】(1)先將方程組中的第一個方程去分母,再利用加減消元法解二元一次方程組即可得;
(2)先分別求出兩個不等式的解集,再找出它們的公共部分即為不等式組的解集,然后把解集在數(shù)
軸上表示出來,并寫出不等式組的整數(shù)解即可.
本題考查了解二元一次方程組和一元一次不等式組,熟練掌握方程組和不等式組的解法是解題關(guān)
鍵.
20.【答案】白53
【解析】解:(1)從中任意摸出1個球,摸到白球的可能性大;
故答案為:白;
⑵摸到紅球的概率=2=|,摸到白球的概率=^=1,
JLUJXMO
(3)設(shè)應(yīng)放入x個紅球,(8-x)個白球,
根據(jù)題意得焉=需,
解得x=5,
8—%=3,
所以應(yīng)放入5個紅球,3個白球.
故答案為:5;3.
(1)由于白球比紅球多,所以摸到白球的可能性大;
(2)根據(jù)概率公式求解;
(3)設(shè)應(yīng)放入x個紅球,(8-X)個白球,根據(jù)概率公式得到蓋=富?,然后解方程即可.
lU-rolU+o
本題考查了概率公式:正確理解概率公式是解決問題的關(guān)鍵.
21.【答案】(1)證明:???BD是△ABC的角平分線,
:.Z-CBD=乙EBD,
???DE//BC,
,Z-CBD=乙EDB,
:,乙EBD=乙EDB.
(2)解:CD=ED,理由如下:
,:AB=AC,
:.Z.C=Z,ABC,
vDE//BC,
:.Z.ADE=ZC,Z,AED=Z-ABC,
???Z.ADE=Z.AED,
:.AD=AE,
V.AB=AC,
:.CD=BE,
由(1)得,乙EBD=^EDB,
.??BE=DE,
:.CD=ED.
【解析】(1)利用角平分線的定義和平行線的性質(zhì)可得結(jié)論:
(2)利用平行線的性質(zhì)可得4WE=乙4ED,則AD=AE,從而有CD=BE,由⑴得,"BD=乙EDB,
可知8E=0E,等量代換即可.
本題主要考查了平行線的性質(zhì),等腰三角形的判定與性質(zhì),角平分線的定義等知識,熟練掌握平
行與角平分線可推出等腰三角形是解題的關(guān)鍵.
22.【答案】解:⑴???貨車的速度是60km",
[a=卷=1.5(h);
(2)由圖象可得點(1.5,0),(3,150),
設(shè)直線的表達(dá)式為s=kt+b,把(1.5,0),(3,150)代人得:
(1.5k+b=0
l3k+b=150'
解哦2%
???s=100t—150;
(3)由圖象可得貨車走完全程需要鬻+0.5=6(/1),
???貨車到達(dá)乙地需6/7,
vs—100C—150,s=330,
解得t=4.8,
??.兩車相差時間為6-4.8=1.2(h),
貨車還需要1.2/1才能到達(dá),
即轎車比貨車早1.2%到達(dá)乙地.
【解析】(1)根據(jù)路程、時間、速度三者之間的關(guān)系即可解決問題;
(2)設(shè)直線的表達(dá)式為s=kt+b,然后利用待定系數(shù)法求一次函數(shù)解析式解答即可解決問題;
(3)根據(jù)時間=路程+速度分別求出貨車與小轎車到達(dá)終點的時間,即可解決問題.
本題考查了一次函數(shù)的應(yīng)用,主要利用了待定系數(shù)法求函數(shù)解析式,路程、時間、速度三者之間
的關(guān)系,從圖中準(zhǔn)確獲取信息是解題的關(guān)鍵.
23.【答案】解:(1)設(shè)每雙速滑冰鞋購進(jìn)價格是x元,每雙花滑冰鞋購進(jìn)價格是y元,
x+2Oy=8500
由題意,
Cx+10y=8000-
%=150
解得
y=200"
答:每雙速滑冰鞋購進(jìn)價格是150元,每雙花滑冰鞋購進(jìn)價格是200元;
(2)設(shè)該校購進(jìn)速滑冰鞋。雙,
根據(jù)題意,得150a+200(2。-10)<9000.
解得a<20.
答:該校至多購進(jìn)速滑冰鞋20雙.
【解析】(1)設(shè)每雙速滑冰鞋購進(jìn)價格是x元,每雙花滑冰鞋購進(jìn)價格是y元,根據(jù)“購進(jìn)30雙
速滑冰鞋和20雙花滑冰鞋共需8500元;若購進(jìn)40雙速滑冰鞋和10雙花滑冰鞋共需8000元”列
出方程組并解答;
(2)設(shè)該校購進(jìn)速滑冰鞋。雙,根據(jù)“該校購進(jìn)花滑冰鞋的數(shù)量比購進(jìn)速滑冰鞋數(shù)量的2倍少10
雙,且用于購置兩種冰鞋的總經(jīng)費不超過9000元”列出不等式.
本題考查了二元一次方程組的應(yīng)用,一元一次不等式組的應(yīng)用,解決問題的關(guān)鍵是讀懂題意,找
到關(guān)鍵描述語,進(jìn)而找到所求的量的等量關(guān)系和不等關(guān)系.
24.【答案】解:⑴丫=2乂+m經(jīng)過點(-3,-2),
-2—2x(-3)+Tn,
解得:m=4,
y=2x+4;
:2:y=kr+b經(jīng)過點(2,-2)且與x軸交于點。(6,0),
(2k+b=-2
(6/c+Z?=0
y
解得:
b=-3
???i2-y=/一3.
(2)聯(lián)立兩函數(shù)解析式,得:
卜=y一3,
ly=2%+4
,*,△4?!概c^ACD同底,
.??面積的比等于高的比.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年配偶間權(quán)益保障協(xié)議
- 2024標(biāo)準(zhǔn)版國內(nèi)貨物運輸協(xié)議樣本版B版
- 2024水土保持技術(shù)服務(wù)合同范本
- 2024年租賃合同:辦公設(shè)備及場地租賃
- 2024景區(qū)旅游服務(wù)設(shè)施建設(shè)合同
- 2024年虛擬現(xiàn)實技術(shù)研發(fā)分包合同協(xié)議書
- 2024微計小程序區(qū)域獨家代理合作合同書2篇
- 2024年第獰部分工程建設(shè)項目協(xié)議版B版
- 2024年還款協(xié)議書
- 2024廣告創(chuàng)意制作與高空安裝服務(wù)協(xié)議一
- 2025年上半年河南省西峽縣部分事業(yè)單位招考易考易錯模擬試題(共500題)試卷后附參考答案-1
- 深交所創(chuàng)業(yè)板注冊制發(fā)行上市審核動態(tài)(2020-2022)
- 手術(shù)室護(hù)理組長競聘
- 電力系統(tǒng)繼電保護(hù)試題以及答案(二)
- 小學(xué)生防打架斗毆安全教育
- 2024-2025學(xué)年九年級英語上學(xué)期期末真題復(fù)習(xí) 專題09 單詞拼寫(安徽專用)
- 網(wǎng)絡(luò)運營代銷合同范例
- 2024年新人教版七年級上冊歷史 第14課 絲綢之路的開通與經(jīng)營西域
- 植保無人機(jī)安全飛行
- 醫(yī)療糾紛事件匯報
- 2024年村干部個人工作總結(jié)例文(3篇)
評論
0/150
提交評論