版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
TeamControlNumber
55585
ProblemChosen
C
Forofficeuseonly
Forofficeuseonly
T1T2T3
T4
F1F2F3
F4
2017
MCM/ICM
SummarySheet
HighwayTrafficFlowModelwithSelf-DrivingVehiclesBasedonCellularAutomata
Summary
Withtheincreasinglackoftransportationcapacityandthegrowthofself-drivingvehicle(SDV)industry,anevaluationshouldbemadetofindouttheinfluenceontrafficwhenmoreandmorenon-self-driving-vehicles(NSDV)arereplacedbySDVswhilefewstudiesweredoneontheinteractionsbetweenSDVsandNSDVsandthecooperationsamongSDVsthemselves.
Wechoosecellularautomata(CA)modeltoevaluatethisproblemafteracarefulstudyandcom-parisonofdifferentkindsoftrafficflowmodelsinthepastfewdecades.Inordertotakethere-lationshipsofSDVsandNSDVsintoconsideration,weimprovethetraditionalCAmodelwhichemphasizesonstatusandrulesofchanges,byredesigningthesetwofactors.BeforebuildingaCAmodel,discretizationshouldbedonefirst.Bylearningtheaveragelength,speed,accelerationofrunningvehiclesonhighwayandthereactiontimeofhumanbeings,thesizeofacellandthetimelengthofaturnaredecided.Aftermakingassumptionsandsimplifyingtheproblem,twointer-relatedCAmodelsarecoveredinthispapertosimulatethechangeabletraffic:theFollowingModelandtheMultilaneTrafficModel.
TheFollowingModelisdesignedtosimulatehowavehiclefollowsanotherinasinglelane.RulesforNSDVsandSDVsaredifferentfromeachother:ForanNSDV,thedriver’sreactiontimeandpsychologicalcharacteristicsareconsidered;ForanSDV,therulesarebasedonthesharingofinformationwithotherSDVsandthejointdecisionmaking.Specifically,wecreateanewconception’SDV-Train’tosimulatethecooperationsamongSDVs.
TheMultilaneTrafficModelisbasedontheFollowingModel.Inthismodel,besidesfollowing,wetrytofindoutwhenandhowshouldavehiclechangealane.Twomainparametersareinvolvedinthismodel:Lane-ChangingMotivation(LCM)andLane-ChangingSecuirty(LCS).LCMdependsonwhetherchangingalanecanincreasethespeedandLCSshowsthewhetheritissafewhenlane-changing.OnlywhenbothLCMandLCSaresatisfied,mayavehiclechangeitslane.DetailsofthesetwoparametersvarybetweenSDVsandNSDVsconsideringthehugedifferencebetweenanautomaticcontrolsystemandahumandriver.Atwo-stepturningmethodisspeciallymadeforthismodelincorrespondencewiththerealworld.
Afterbuildingandmakingimprovementstothemodel,wewriteprogramstosimulateitandgethugevolumesofdata.WeanalyzeandvisualizethedatausingMatlab,showingstrongcorrelationsamongthreeparameters:theaveragespeed,thetrafficflowandthepercentageoftheSDVsrunningontheroad.TheincreasingnumberofSDVshasgreatinfluenceonthetrafficflowwhichalmosttripleswhenalltheNSDVsarereplacedbySDVs.Also,wefindthataspeciallaneforSDVs(SDVLane)shouldbebuiltwhenthepercentagereachesacertainlevel.
Basedonthecorrelationswegetinanalysis,weapplyourmodeltotheGreatSeattleareabycomparingtherealdataandthedatawegainfromsimulations.Wefindthatthelackoftrafficcapacityinthisareaishuge.AlthoughaddingSDVstothestreetcanreducethislack,itisnotacure.WebelieveacomprehensivemethodshouldbeappliedinthisareaincludingsettingaSDVLaneandbroadeninghighwaysinsomeparticularlynarrowparts.
Keywords:TrafficFlowModel;Self-DrivingVehicle;CellularAutomata
Team#55585
Contents
1
Introduction
1
2
SimplificationsandAssumptionsoftheProblem
1
1
2
3
3
2.1
2.2
2.3
2.4
FeaturesoftheHighway....................................
FeaturesofVehicles.......................................
SpecialFeaturesofNSDVs...................................
SpecialFeaturesofSDVs....................................
3
ChoiceandBasicSettingsoftheModel
3
3
4
4
3.1
3.2
3.3
ChoiceoftheModel.......................................
Discretization..........................................
BasicSettings ..........................................
4
DetailsoftheModel
4.1 FollowingModel........................................
4
4
5
6
7
9
9
10
10
12
4.1.1
4.1.2
4.1.3
Variables.........................................
FollowingRulesforNSDVs..............................
FollowingRulesforSDVs...............................
4.2 MultilaneTrafficModel ....................................
4.2.1
4.2.2
4.2.3
4.2.4
Variables.........................................
GeneralRulesofChangingLanes ..........................
Lane-ChangingRulesforNSDVs...........................
Lane-ChangingRulesforSDVs............................
5
AnalysisoftheResultsObtainedfromtheModelSimulation
13
13
15
16
5.1
5.2
5.3
ResultsofFollowingModel..................................
ResultsoftheMultilaneTrafficModel............................
SDVLane.............................................
6
ApplianceoftheModel
17
7
SensitivityAnalysis
7.1 ChoiceoftheParametersinLCP
18
18
18
...............................
7.2 DifferentSpeedLimit.
.....................................
8
Conclusions
19
9
Strengthsandweaknesses
9.1 Strengths.............................................
19
19
19
9.2 Weaknesses
...........................................
10
ALetter
20
Appendices
22
Team#55585
Page1of34
1 Introduction
Builtinthe20thcentury,manyhighwaysweredesignedtomeetthetransportationdemandsatthattime.Withtheboomofpopulation,urbanizationandeconomy,theneedoftransportationgrowsrapidlyinthenewcentury.Nowadays,highwaysintheGreatSeattleareacannolongermeetpeople’sneedandtrafficdelayscanbeseeneverywhereduringpeakhours.However,atthistimebuildingmoreroadsoraddinglanesinthisareaisextremelydifficultandexpensive.Inordertoincreasethecapacityofhighwayswithoutincreasingthenumberoflanesorroads,allowingself-drivingvehicles(SDVs)torunontheroadshouldbetakenintoconsideration.AmodelisneededtoevaluateSDVs’influenceonthetrafficflow.
Weproposedtodecomposethisproblemintothreeparts:
?
BuildamodelthatcansimulatethetrafficflowindifferentpercentageofSDVsandnon-self-drivingvehicles(NSDVs),numberoflanesandtrafficvolume.
Usethemodeltofindtheequilibriaortippingpointsandapplythemodeltotheprovideddata.
Basedonthedata,decidewhethertherearesomeconditionswherelanesshouldbededicatedtoSDVsandhowthepolicyshouldbechanged.
?
?
Firstly,weusecellularautomata(CA)tosimulatethetrafficflowwhenthereisonlyonelane.ThismodeliscalledtheFollowingModel.Inourmodel,werulethewayeachcellbehavesbysimplifyingthebehaviorsofvehiclesinreallife,likewhenavehiclewillslowdownorspeedup.WeusedifferentrulesforSDVsandNSDVsinourmodeltosimulatethecooperationsamongSDVs,interactionsbetweenSDVsandNSDVs,unpredictabilityofhuman-beingsandotherfactors.
BasedontheFollowingModelwebuilt,weputseparateparrellanestogetherandaddnewrulestosimulatethetrafficflowonamultilanehighway.ThisistheMultilaneTrafficModel.Aftersimplifyingthebehaviorsofrealvehicles’changinglanes,wemakerulesonwhenandhowacellmoveacrosslanes.Boththemotivationandthesafetyconcernareconsidered.Furthermore,wemakespecialrulestosimulatehumanbehaviorsandcooperationsamongSDVsincludingtheformofachainofSDVscalledtheSDV-Train.
Secondly,usingreal-lifeparameters,weruntheCAmodelandgetalargenumberofdata.Byanalyzingthedata,wefindseveralinterestingfeaturesofthemixedtrafficflow.Thecorrelationsamongtheaveragespeed,thetrafficflowandthepercentageofSDVsarestrong.Thesethreepa-rametersinfluenceeachotherintheirownway.Whentherearemanylanes,thesituationchangesandmoreinterestingphenomenaarefoundincludingtherelationshipsbetweentheefficiencyofeachlineandthepercentageofSDVs.Aftercomparison,wefindoutwhenandhowtobuildaspeciallaneforSDVs(SDVLane).
Thirdly,wecomparedourdatawithrealdataintheGreatSeattlearea.Wefindthatthereisindeedagreatlackoftrafficcapacityinthisarea.AfterchangingNSDVstoSDVs,thetrafficcapacityincreasesandeventriplesbutwebelievethetrafficsituationinthisareaisstillnotabundant.MoremethodsincludingbroadenafewpartsofthecurrenthighwayandsettingaSDVLaneshouldbetakenintoconsideration.
SimplificationsandAssumptionsoftheProblem
FeaturesoftheHighway
StraightRoad
Ahighwayinthismodelshouldbestraightoritsdegreeofcurvaturecanbeignored[1].A
vehicle’sspeedandotherconditionsdoesnotchangebecauseoftheshapeoftheroad.
Team#55585
Page2of34
2.
3.
4.
Thenumberoflanesshouldremainconstantforalongperiod.
Thehighwayisingoodconditionandthetrafficflowisnotaffectedbytheroughroad.
Nopedestrian,animaloranyformofobstaclecanbefoundonthehighwaysothetrafficflowwouldnotbeblocked.
Weatherchangesandilluminationdifferenceduringdifferenttimeisnottakenintoconsid-eration.
RulesforSDVLane
5.
6.
?
IfaSDVLaneisset,allSDVsshouldruninthislinewhilenoneoftheNSDVsmayruninit.
OnlyoneSDVLanecanbesetinourmodelconsideringthewidthofthehighwayislimited.
TheSDVLanewillbeplacedontheedgeoftheroadtopreventaseparationoflanesforNSDVs.
?
?
7.
8.
Thewidthofeachlaneis12feet.
Thespeedlimitofallhighwaysis60mph.
2.2
1.
FeaturesofVehicles
Inthismodel,onlyaveragelength,speed,accelerationandotherfeaturesofvehiclesareused.Althoughthereisagreatdiversityamongdifferentvehicles,thisdifferencecanbeignoredandtheresultofthemodelwouldnotbegreatlyaffected.
Allvehiclesobeytrafficlaws.Theviolationoftrafficlawsdoesgreatharmtothedriver’shealth,publicsecurityaswellasthespeedoftotaltrafficflow.Asaresult,thesecircumstanceswouldnotoccurinourmodel:
2.
?
?
?
?
avehicleexceedsthespeedlimit;avehiclestopsfornoreason;
avehiclerunsinanemergencylaneorontheshoulderfornoreason;avehiclechangesitslanebut
itsturninglightisnotturnedoninadvance;
thevehiclebehinditshowsitsintentiontochangethelane;twovehiclesrunsidebysideinonelane;
thedistancebetweentwovehiclesinthesamelaneistooshort.
?
?
3.
Trafficaccidentisnottakenintoconsideration.DetailsofitsinfluencewillbediscussedinSection9.2.
Averagedailytrafficflowisusedinthismodel.Trafficflowvariesindifferentdays,soanaveragelevelshouldbeusedtosimplifythismodel.
Hornisnotusedinourmodel.Onhighway,theinfluenceofahornislimitedbecausethedistancebetweentwovehiclesistoolongforacomplicatedsoundsignaltobeheardandunderstoodclearly.
4.
5.
Team#55585
Page3of34
2.3
1.
SpecialFeaturesofNSDVs
Uncertaintyoftheestimationofdistanceandspeed
Comparedwithcomputersystems,humandriversaremorelikelytomakemistakes,especiallywhenitcomestotheevaluationofdistanceandspeed.Therefore,humandriverstendtoslowdownthevehicleandchoosenottochangealanewhentheycannotestimatethedistanceclearlyevenwhenothervehiclesareoutoftheminimumsafedistance.
Longerreactiontime
Humandriversneedmoretimetodecelerateandstarttheirvehiclecomparedwithself-drivingonesespeciallyonthehighway[2].
2.
2.4
1.
SpecialFeaturesofSDVs
Shortreactiontime
SDVsarecontrolledbycomputersystemswhichrunfastandcanstayactiveforthewholetime.Withmoderntechnology,itiseasyforanSDVtoperceivetheoutsideworldandmakereactionsaccordinglyinashorttime.
CooperationsamongSDVs
ThesystemofanSDVisconnectedtotheInternet,thereforeinformationofalltheSDVsonaroadisshared.Withmoreinformation,anetworkdecision-makingsystemcanbebuiltwhichismentionedinpreviousstudies[3].
Maturetechnology
Thetechnologyofself-drivingismatureenoughandnomalfunctionofSDVs’guiding,drivinganddecision-makingsystemistakenintoconsiderationinthismodel.IfanaccidentdoeshappentoanSDV’ssystem,thisSDVshouldbelabeledasanNSDV.
InteractionsbetweenanNSDVandanSDV
AsdiscussedinSection3,forahumandriver,thereisnodifferencebetweenanSDVandanNSDVthatheorsheencountersonthestreet,forSDVswouldmakelessmistakesthanNSDVsandwouldnotcausemoretroubletohumandrivers.
2.
3.
4.
3 ChoiceandBasicSettingsoftheModel
3.1
ChoiceoftheModel
Inthepastfewdecades,withthedevelopmentoftransportation,agreatvarietyofmodelssimu-
latingthetrafficwerebuiltandimproved,amongwhichContinuousMediummodelandCAmodelarethemostpopularones.LighthillandWhithamfirstlyputforwardtheconceptofcontinuous
mediummodel,whileshortlyafterwardsRichardsalsoputforwarditindependently,thereforeitisalsonamedLWRmodel[4].LWRmodelmainlyfocusesonthemacroscopichomogeneityandsta-bilityofthetrafficflow.However,inthisproblem,thecooperationsbetweenSDVsandthereactionsbetweenanSDVandanNSDVmustbefurtherdiscussed,whichmakesithardforustoadapttheLWRmodel,becauseLWRmodelneglectstheinteractionsbetweendifferentparticlesintheflow.Aftercarefulcomparison,wefindthattraditionalCAmodelwithmodificationscanbeusedinthisproblem.
Inreallife,theactionofavehicletakenbybothhumandriversandcomputersystemsdependsonthestatusofthevehicleitselfandthesurroundingtraffic,whichissimilartotherulesofCA,whichisoriginallydiscoveredinthe1940sbyStanislawUlamandJohnvonNeumann[5].ThebasicideaofCAisthatitstartswithasetofcellswithstatus.Asimplesetofrulesarecreatedthatthe
Team#55585
Page4of34
statusareupdateddependingonthestatusofthecellanditsneighbors.Withmultipleiterations,CAmodelscansimulatethemovementofcomplexobjects.ChangesaremadetothestatusandtherulesoftheoriginalCAmodelinorder,ensuringthatthismodelcanworkforamixtureofSDVsandNSDVs.InordertomakeaCAmodel,discretizationshouldbedonefirsttoalmostallvariables.
3.2
Discretization
InourCAmodels,eachvehicleisregardedasacellwithitsownstatus.Besides,eachlaneisalso
dividedintocellsthatcancontainthevehicleswhiletimeisdividedintosmallunits(turns).
Sizeofacell
TheaveragelengthofvehicleinU.S.isabitlongerthan4meters.Aseverycellrepresentsavehicle,thelengthofthecellshouldbethesameastheaveragelength.Tosimplifythecalculation,weuse
1.
1cell=4m
(3.1)
2.
Timeunit
AstheresultsofTriggs,T.J.andHarris,W.G’sworkshows,theaveragereactiontimefordriversisaround1.5seconds[2].InoneturnoftheCAmodel,avehiclemakesoneaction,so
1.5secondsisagoodchoiceforourCAmodel’stimeunit.
1turn=1.5s
(3.2)
3.3
1.
BasicSettings
Speed
Thespeedlimitofroadis60mph,whichis10cellperturn,usingEqn.(3.1)andEqn.(3.2).BecauseCAmodelisdiscretized,thespeedisregardedasanaturalnumberfrom0to10inourmodel.
Acceleration
Accordingtotheassumption,thespeedofavehicleshouldchangestepbystep.Inourmodel,thespeedcanonlychange1cellinaturn.UseEqn.(3.1)andEqn.(3.2),theaccelerationofavehicleis2.67m/s2,whichisinlinewithdailyexperience.
MinimumSafeFollowingDistance(MinSFD)
Avehicleshouldnotgettooclosetothevehicleaheadtopreventaccidentwhenrunningonahighway.MinimumSafeFollowingDistance(MinSFD)isdesignedtomakesurethatanormalvehiclerunningatacertainspeedcanstopbeforecollision.
2.
3.
4 DetailsoftheModel
InourCAmodels,rulesaremadetosimulatevehicles’movement.Amongallkindsofmove-ments,twotypesofvehicle’sactionsarethemostimportantones:followingandlane-changing.TheFollowingModelandtheMultilaneTrafficModelaremadetosimulatethesetwotypesofactions.
4.1
FollowingModel
TheFollowingModelsimulatestheflowofvehiclesinasinglelaneonthehighway.Largequan-
titiesofsingle-lanetrafficflowmodelshavebeendeveloped,themostfamousoneofwhichisthe
NaSch(NS)model.KaiNagelandMichaelSchreckenbergbuiltthisCAmodelforhighwaytrafficin1992[6].Theirmodel’ssimulationsshowatransitionfromlaminartrafficflowtostart-stopwaves
Team#55585
Page5of34
withincreasingvehicledensity.Inreallife,SDVs’behaviorisdifferentfromthenon-self-drivingones,soourmodificationsfortheNaSchmodelaremainlyfocusedontheSDVs.
4.1.1 Variables
Table1:MainVariablesUsedintheFollowingModel
Variable
Defination
Unit
di
?di
DistancebetweenvehicleNo.iandthestartpointDistancebetweenvehicleNo.iandthevehicleaheadofit
cellcell
viai
SpeedofvehicleNo.i
WhethervehicleNo.iisacceleratingornot
cell/timestepunitless
biti
StatusofthebacklightofvehicleNo.iTypeofvehicleNo.i
unitlessunitless
MinSFDbetweentwovehicleswhenthelatterone’sspeedisv
Maximumdistancebetweentwovehicleswhenthelatterone’s
Dmin(v)
cell
Dmax(v)
P1,i
cell
unitless
speedisvandtheactionoftheformeronecanbeignoredPossibilityofahumandrivertodecelerateoutofcaution
vA
A
ΔdA
BackLightOn
bi=1
BackLightOff
bi=0
SDV
NSDV
Figure1:DiagramofMainVariablesUsedintheFollowingModel
MainvariablesusedintheFollowingModelareshowninTab.4.1.1andFig.1.Specifically,Eqn.(4.3)showsthefunctionsforthestatusofthebacklightandthevehicletypeseparately:
{
0,
1,
0,
1,
thebacklightofvehicleNo.iisoffthebacklightofvehicleNo.iison
vehicleNo.iisanNSDVvehicleNo.iisanSDV
bi=
{
(4.3)
ti=
ForanNSDV,nolightsignalshowswhetheritisacceleratingornot,whichparameteraiindicates.However,thisinformationissharedamongself-drivingones,whichiswhatEqn.(4.4)shows:
{
0, vehicleNo.iisnotaccelerating
ai=
(4.4)
1, vehicleNo.iisaccelerating
A
vA
B vB
C
vC
DvD
Team#55585
Page6of34
4.1.2
?
FollowingRulesforNSDVs
Deceleration
Aswediscussedinpart1andpart2ofSection2.4,humandriverneedmoretimetoreactandtheysometimeschoosetoslowdowntomaintainalongerfollowingdistanceoutofcaution.InthisFollowingModel,ifvehicleNo.iisNon-Self-Driving,apossibilityfunctionP1,iismadeforittosimulatethetwofactorsmentionedabove.ForanNSDVA,Eqn.(4.5)showsthefunction,inwhichBrepresentsthefirstvehiclethatisinfrontofA.
P11,P12,P13,0,
bB=1∧?dA>Dmin(vA)∧?dA<Dmax(vA)bB=0∧?dA>Dmin(vA)∧?dA<Dmax(vA)vA=0
othercases
P1,A
(4.5)
=
Incalculation,weusetheresultsgotfromperviousworks[7][8]:
(4.6)
P11=0.94,P12=0.50,P13=0.20
Inshort,thereisarateforNSDVstodecelerateundercertaincircumstances.AsshowninLane1inFig.2,foranNSDVA,everyturnarandomnumberRbetween0and1isgivenintheFollowingModel,and:
P1,A?R?vA=vA?1,bA=1
Besidesthiseffect,ifthereisanothervehiclewithinvehicleA’sMinSFD,Ahastodecelerate
andturnitsbacklighton.Thatis:
?dA?Dmin(vA)?vA=vA?1,bA=1
AndthisisLane2inFig.2.
Dmax(vA)
Dmin(vA)
Deceleration
vA
Lane1
A
B
(P1,A
R)
Lane2
vA
Deceleration
A
B
vA
Acceleration
Lane3
A
B
vA
Lane4
Acceleration
A
B
Hold
vA
Lane5
A
B
(P1,A
R)
Figure2:FollowingRulesforNSDVs
?
Acceleration
IfNSDVAdoesnotdeceleratebecauseofPA,andvehicleBis
faraway,or
notdeceleratingandoutofA’sMinSFD
Team#55585
Page7of34
thenAwillaccelerate,whichareshownseparatelyinLane3andLane4inFig.2.Thatis:
P1,A<R∧?dA>Dmax(vA)∨bB=0∧?dA>Dmin(vA)
?vA=vA+1,bA=0
Hold
Onothercircumstances,anNSDVholdsitsspeed,whichisshowninLane5ofFig.2:
[OtherCircumstances]?bA=0.
(
))
(
4.1.3 FollowingRulesforSDVs
Accordingtothediscussioninpart1andpart2ofSection2.4,SDVshaveshortreactiontimeandtheycancooperatewitheachother.Consideringthatanaccidenthappensrightinfrontofastraightlineofvehicles,allvehiclesshoulddecelerateinordertokeeptheMinSFD.Iftheyarecontrolledbyhumanbeingswhosereactiontimecannotbeignored,vehicleswilldecelerateonebyonebutwithadelay.However,ifallvehiclesareself-drivingones,theycandecelerateatthesametime,thankstothecooperatingsystem.Itisthesamefortheaccelerationprocess,becauseaicanbeknownforallSDVs,whichismentionedinSection4.1.1.
AnotherfactoristhatthewaychangestocalculateminimumsafefollowingdistancebetweentwoSDVswhichonefollowsanotherclosely,becauseallSDVssharetheinformationofspeedandotherparametersoftheSDVsinfrontofthem,whichismentionedinpart2ofSection2.4.Asisalsoassumedinpart3ofSection2.4,malfunctionoftheself-drivingsystemisnottakenintoconsiderationinthismodel.ThetwoadjacentSDVscandecelerateatthesametimeifemergencyhappens,sothattheMinSFDforanSDVcanbecalculatedfollowingEqn.(4.7),inwhichtheBrakingDistanceoftheformercanberemoved.NocollisionbetweenSDVswillhappenwhenallinformationissharedanddecisionsaremadecooperatively.
BrakingDistanceE=Dmin(m(ax(vE?2,0))
)
(4.7)
(vA)=maxDmin(vA)?BrakingDistanceE+1,1
D
min(SDV?SDV)
InEqn.(4.7)EistheSDVaheadofA.
WiththechangeofDmin(SDV?SDV),thedistancebetweenSDVscanbeshortenedandtherefore
arowofpureSDVscanbeformed.WhenallthedistancesbetweentwoconsecutiveSDVsaretheir
Dmin(SDV?SDV),thischainofSDVscanbecalledaSDV-Train.ForanSDVA,ifitisinanSDV-
Train,letFbetheSDVinthefrontofthetrain.ThethreevehiclesinLane4fromFig.3formatypicalSDV-Train.
Dmax(vA)
Dmin(vA)
vA
B
Acceleration
A
Lane1
vA
A
C
Acceleration
Lane2
AvAvA
Acceleration
E
Lane3
Acceleration
(aF=1)
vA
A
Lane4
F
aSDV-Train
Figure3:FollowingRulesforSDVs:Acceleration
Team#55585
Page8of34
?
Acceleration
AnSDVacceleratesunder4conditions:
itfollowsavehicleB,andtheirdistanceislongerthanDmax(vA),thatis:
?DA?Dmax(vA)?vA=vA+1;bA=0;aA=1;
1.
whichisthesituationinLane1inFig.3;
itfollowsanNSDVC,whosebacklightisoffandtheirdistanceislongerthantheMinSFDofA,thatis:
tC=0∧bC=0∧?DA?Dmin(vA)?vA=vA+1;bA=0;aA=1;
2.
whichisthesituationinLane2inFig.3;
itfollowsanSDVE,andtheirdistanceislongerthantheDmin(SDV?SDV)ofA,thatis:
tE=1∧?DA>Dmin(SDV?SDV)(vA)?vA=vA+1;bA=0;aA=1;
whichisthesituationinLane3inFig.3;
itisina’SDV-Train’,andthefirstSDVFintrainaccelerates,thatis:
3.
4.
=1?vA=vA+1;bA=0;aA=1.
?DA
=Dmin(SDV?SDV)(vA)∧aF
whichisthesituationinLane4inFig.3.
?
Deceleration
Dmax(vA)
Dmin(vA)
Deceleration
vA
C
Lane1
A
AvAvA
Deceleration
Lane2
E
vA
Deceleration
A
F
Lane3
aSDV-Train
Figure4:FollowingRulesforSDVs:Deceleration
AnSDVdeceleratesunder3conditions:
1.itfollowsanNSDVC,andtheirdistanceisshorterthantheMinSFDofA,thatis:
tC=0∧?DA?Dmin(vA)?vA=vA?1;bA=1;aA=0;
whichisthesituationinLane1inFig.4;
2.itfollowsanSDVE,andtheirdistanceisshorterthantheDmin(SDV?SDV)ofA,thatis:
tE=1∧?DA?Dmin(SDV?SDV)(vA)?vA=vA?1;bA=1;aA=0;
whichisthesituationinLane2inFig.4;
Team#55585
Page9of34
3.itisina’SDV-Train’,andthefirstSDVFintraindecelerates,thatis:
=1?vA=vA?1;bA=1;aA=0.
?DA
=Dmin(SDV?SDV)(vA)∧bF
whichisthesituationinLane3inFig.4.
?
Hold
Onothercircumstances,anSDVholdsitsspeed:
[OtherCircumstances]?bA=0;aA=0.
TwodifferentsituationsareshowninFig.5:
Dmax(vA)
Dmin(vA)
Hold
Lane1
Hold
(aF=0)
Lane2
aSDV-Train
Figure5:FollowingRulesforSDVs:Hold
4.2
MultilaneTrafficModel
Onmultilanehighways,vehiclestendtostayonitsownlane,whichisthesameastheFollowing
ModelmentionedaboveinSection4.1.However,undercertaincircumstances,driverschangetheir
lanes.TheMultilaneTrafficModelisdesignedonthebasisoftheFollowingModeltosimulatethislane-changingaction[9].BecauseofSDVs’cooperationwitheachotherandtheformationofSDV-Trains,SDVs’rulesofchanginglanesvarywithNSDVs’.
4.2.1 Variables
Table2:AdditionalVariablesUsedintheMultilaneTrafficModel
Variable Defination
Unit
?di,j
ci
DistancebetweenvehicleNo.iandvehicleNo.jStatusoftheturninglightsofvehicleNo.i
cellunitless
NumberoflanewhichvehicleNo.iisonPossbilityofahumandriverofvehicleNo.i
unitless
li
P2,i
unitless
tochangethelanewhenconditionallows
BesidesvariableslistedinTab.4.1.1,additionalvariablesusedintheMultilaneTrafficModelarelistedinTab.4.2.1andFig.6.Specifically,Eqn.(4.8)showsthefunctionforthestatusofvehicleNo.i’sturninglights:
turninglightsofvehicleNo.iareoff
0,
ci=
1, therightturninglightofvehicleNo.iison
?1,theleftturninglightofvehicleNo.iison
(4.8)
A vA C
A vA
F
Team#55585
Page10of34
C
vC
lC=2
ΔdA,E
1
Lane
2
Lane
BothLightsOff
ci=0
RightLightOn
ci=1
LeftLightOn
ci=-1
Figure6:DiagramofAdditionalVariablesUsedintheMultilaneTrafficModel
4.2.2 GeneralRulesofChangingLanes
Asweassumedinpart2ofSection2.2,driversonlychangetheirlanewhennecessary:
Thevehicleonthesamelaneaheadisnotfarawayandisrunningmuchslower;
Thetrafficconditiononthelanebesideisbetter.
ThisiscalledLane-Changin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州航空職業(yè)技術(shù)學院《小學數(shù)學課程標準與教材分析》2023-2024學年第一學期期末試卷
- 二建市政工程實務(wù)-二級建造師《市政公用工程管理與實務(wù)》??荚嚲?340
- 2024年國家電網(wǎng)招聘之法學類題庫及參考答案(a卷)
- 無人機配送發(fā)展的實施路徑與戰(zhàn)略規(guī)劃
- 2024年公務(wù)員考試遂川縣《行政職業(yè)能力測驗》考前沖刺試卷含解析
- 2024年消防宣傳總結(jié)范文(33篇)
- 2025年婦聯(lián)下半年工作計劃范文范文
- 2025年學生會部門干事個人工作計劃
- 2025年稅政管理工作總結(jié)情況暨2025年工作計劃
- 2025年防震減災(zāi)工作計劃防震減災(zāi)工作計劃
- 木制家具保修協(xié)議
- 2024上海市化工職業(yè)病防治院上海市職業(yè)安全健康研究院工作人員招聘20人(高頻重點復(fù)習提升訓(xùn)練)共500題附帶答案詳解
- JGJ142-2012 輻射供暖供冷技術(shù)規(guī)程
- 物業(yè)管理流程:高端寫字樓服務(wù)
- JTG-B01-2014公路工程技術(shù)標準
- 海員常見疾病的保健與預(yù)防
- 易錯題(試題)-2024一年級上冊數(shù)學北師大版含答案
- 傷口護理小組工作總結(jié)
- 蘇教版六年級科學上冊復(fù)習資料-已整理
- 科勒衛(wèi)浴行業(yè)分析
- 湖南省邵陽市初中聯(lián)考2023-2024學年九年級上學期期末地理試題
評論
0/150
提交評論