美賽集美賽獎_第1頁
美賽集美賽獎_第2頁
美賽集美賽獎_第3頁
美賽集美賽獎_第4頁
美賽集美賽獎_第5頁
已閱讀5頁,還剩31頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

TeamControlNumber

55585

ProblemChosen

C

Forofficeuseonly

Forofficeuseonly

T1T2T3

T4

F1F2F3

F4

2017

MCM/ICM

SummarySheet

HighwayTrafficFlowModelwithSelf-DrivingVehiclesBasedonCellularAutomata

Summary

Withtheincreasinglackoftransportationcapacityandthegrowthofself-drivingvehicle(SDV)industry,anevaluationshouldbemadetofindouttheinfluenceontrafficwhenmoreandmorenon-self-driving-vehicles(NSDV)arereplacedbySDVswhilefewstudiesweredoneontheinteractionsbetweenSDVsandNSDVsandthecooperationsamongSDVsthemselves.

Wechoosecellularautomata(CA)modeltoevaluatethisproblemafteracarefulstudyandcom-parisonofdifferentkindsoftrafficflowmodelsinthepastfewdecades.Inordertotakethere-lationshipsofSDVsandNSDVsintoconsideration,weimprovethetraditionalCAmodelwhichemphasizesonstatusandrulesofchanges,byredesigningthesetwofactors.BeforebuildingaCAmodel,discretizationshouldbedonefirst.Bylearningtheaveragelength,speed,accelerationofrunningvehiclesonhighwayandthereactiontimeofhumanbeings,thesizeofacellandthetimelengthofaturnaredecided.Aftermakingassumptionsandsimplifyingtheproblem,twointer-relatedCAmodelsarecoveredinthispapertosimulatethechangeabletraffic:theFollowingModelandtheMultilaneTrafficModel.

TheFollowingModelisdesignedtosimulatehowavehiclefollowsanotherinasinglelane.RulesforNSDVsandSDVsaredifferentfromeachother:ForanNSDV,thedriver’sreactiontimeandpsychologicalcharacteristicsareconsidered;ForanSDV,therulesarebasedonthesharingofinformationwithotherSDVsandthejointdecisionmaking.Specifically,wecreateanewconception’SDV-Train’tosimulatethecooperationsamongSDVs.

TheMultilaneTrafficModelisbasedontheFollowingModel.Inthismodel,besidesfollowing,wetrytofindoutwhenandhowshouldavehiclechangealane.Twomainparametersareinvolvedinthismodel:Lane-ChangingMotivation(LCM)andLane-ChangingSecuirty(LCS).LCMdependsonwhetherchangingalanecanincreasethespeedandLCSshowsthewhetheritissafewhenlane-changing.OnlywhenbothLCMandLCSaresatisfied,mayavehiclechangeitslane.DetailsofthesetwoparametersvarybetweenSDVsandNSDVsconsideringthehugedifferencebetweenanautomaticcontrolsystemandahumandriver.Atwo-stepturningmethodisspeciallymadeforthismodelincorrespondencewiththerealworld.

Afterbuildingandmakingimprovementstothemodel,wewriteprogramstosimulateitandgethugevolumesofdata.WeanalyzeandvisualizethedatausingMatlab,showingstrongcorrelationsamongthreeparameters:theaveragespeed,thetrafficflowandthepercentageoftheSDVsrunningontheroad.TheincreasingnumberofSDVshasgreatinfluenceonthetrafficflowwhichalmosttripleswhenalltheNSDVsarereplacedbySDVs.Also,wefindthataspeciallaneforSDVs(SDVLane)shouldbebuiltwhenthepercentagereachesacertainlevel.

Basedonthecorrelationswegetinanalysis,weapplyourmodeltotheGreatSeattleareabycomparingtherealdataandthedatawegainfromsimulations.Wefindthatthelackoftrafficcapacityinthisareaishuge.AlthoughaddingSDVstothestreetcanreducethislack,itisnotacure.WebelieveacomprehensivemethodshouldbeappliedinthisareaincludingsettingaSDVLaneandbroadeninghighwaysinsomeparticularlynarrowparts.

Keywords:TrafficFlowModel;Self-DrivingVehicle;CellularAutomata

Team#55585

Contents

1

Introduction

1

2

SimplificationsandAssumptionsoftheProblem

1

1

2

3

3

2.1

2.2

2.3

2.4

FeaturesoftheHighway....................................

FeaturesofVehicles.......................................

SpecialFeaturesofNSDVs...................................

SpecialFeaturesofSDVs....................................

3

ChoiceandBasicSettingsoftheModel

3

3

4

4

3.1

3.2

3.3

ChoiceoftheModel.......................................

Discretization..........................................

BasicSettings ..........................................

4

DetailsoftheModel

4.1 FollowingModel........................................

4

4

5

6

7

9

9

10

10

12

4.1.1

4.1.2

4.1.3

Variables.........................................

FollowingRulesforNSDVs..............................

FollowingRulesforSDVs...............................

4.2 MultilaneTrafficModel ....................................

4.2.1

4.2.2

4.2.3

4.2.4

Variables.........................................

GeneralRulesofChangingLanes ..........................

Lane-ChangingRulesforNSDVs...........................

Lane-ChangingRulesforSDVs............................

5

AnalysisoftheResultsObtainedfromtheModelSimulation

13

13

15

16

5.1

5.2

5.3

ResultsofFollowingModel..................................

ResultsoftheMultilaneTrafficModel............................

SDVLane.............................................

6

ApplianceoftheModel

17

7

SensitivityAnalysis

7.1 ChoiceoftheParametersinLCP

18

18

18

...............................

7.2 DifferentSpeedLimit.

.....................................

8

Conclusions

19

9

Strengthsandweaknesses

9.1 Strengths.............................................

19

19

19

9.2 Weaknesses

...........................................

10

ALetter

20

Appendices

22

Team#55585

Page1of34

1 Introduction

Builtinthe20thcentury,manyhighwaysweredesignedtomeetthetransportationdemandsatthattime.Withtheboomofpopulation,urbanizationandeconomy,theneedoftransportationgrowsrapidlyinthenewcentury.Nowadays,highwaysintheGreatSeattleareacannolongermeetpeople’sneedandtrafficdelayscanbeseeneverywhereduringpeakhours.However,atthistimebuildingmoreroadsoraddinglanesinthisareaisextremelydifficultandexpensive.Inordertoincreasethecapacityofhighwayswithoutincreasingthenumberoflanesorroads,allowingself-drivingvehicles(SDVs)torunontheroadshouldbetakenintoconsideration.AmodelisneededtoevaluateSDVs’influenceonthetrafficflow.

Weproposedtodecomposethisproblemintothreeparts:

?

BuildamodelthatcansimulatethetrafficflowindifferentpercentageofSDVsandnon-self-drivingvehicles(NSDVs),numberoflanesandtrafficvolume.

Usethemodeltofindtheequilibriaortippingpointsandapplythemodeltotheprovideddata.

Basedonthedata,decidewhethertherearesomeconditionswherelanesshouldbededicatedtoSDVsandhowthepolicyshouldbechanged.

?

?

Firstly,weusecellularautomata(CA)tosimulatethetrafficflowwhenthereisonlyonelane.ThismodeliscalledtheFollowingModel.Inourmodel,werulethewayeachcellbehavesbysimplifyingthebehaviorsofvehiclesinreallife,likewhenavehiclewillslowdownorspeedup.WeusedifferentrulesforSDVsandNSDVsinourmodeltosimulatethecooperationsamongSDVs,interactionsbetweenSDVsandNSDVs,unpredictabilityofhuman-beingsandotherfactors.

BasedontheFollowingModelwebuilt,weputseparateparrellanestogetherandaddnewrulestosimulatethetrafficflowonamultilanehighway.ThisistheMultilaneTrafficModel.Aftersimplifyingthebehaviorsofrealvehicles’changinglanes,wemakerulesonwhenandhowacellmoveacrosslanes.Boththemotivationandthesafetyconcernareconsidered.Furthermore,wemakespecialrulestosimulatehumanbehaviorsandcooperationsamongSDVsincludingtheformofachainofSDVscalledtheSDV-Train.

Secondly,usingreal-lifeparameters,weruntheCAmodelandgetalargenumberofdata.Byanalyzingthedata,wefindseveralinterestingfeaturesofthemixedtrafficflow.Thecorrelationsamongtheaveragespeed,thetrafficflowandthepercentageofSDVsarestrong.Thesethreepa-rametersinfluenceeachotherintheirownway.Whentherearemanylanes,thesituationchangesandmoreinterestingphenomenaarefoundincludingtherelationshipsbetweentheefficiencyofeachlineandthepercentageofSDVs.Aftercomparison,wefindoutwhenandhowtobuildaspeciallaneforSDVs(SDVLane).

Thirdly,wecomparedourdatawithrealdataintheGreatSeattlearea.Wefindthatthereisindeedagreatlackoftrafficcapacityinthisarea.AfterchangingNSDVstoSDVs,thetrafficcapacityincreasesandeventriplesbutwebelievethetrafficsituationinthisareaisstillnotabundant.MoremethodsincludingbroadenafewpartsofthecurrenthighwayandsettingaSDVLaneshouldbetakenintoconsideration.

SimplificationsandAssumptionsoftheProblem

FeaturesoftheHighway

StraightRoad

Ahighwayinthismodelshouldbestraightoritsdegreeofcurvaturecanbeignored[1].A

vehicle’sspeedandotherconditionsdoesnotchangebecauseoftheshapeoftheroad.

Team#55585

Page2of34

2.

3.

4.

Thenumberoflanesshouldremainconstantforalongperiod.

Thehighwayisingoodconditionandthetrafficflowisnotaffectedbytheroughroad.

Nopedestrian,animaloranyformofobstaclecanbefoundonthehighwaysothetrafficflowwouldnotbeblocked.

Weatherchangesandilluminationdifferenceduringdifferenttimeisnottakenintoconsid-eration.

RulesforSDVLane

5.

6.

?

IfaSDVLaneisset,allSDVsshouldruninthislinewhilenoneoftheNSDVsmayruninit.

OnlyoneSDVLanecanbesetinourmodelconsideringthewidthofthehighwayislimited.

TheSDVLanewillbeplacedontheedgeoftheroadtopreventaseparationoflanesforNSDVs.

?

?

7.

8.

Thewidthofeachlaneis12feet.

Thespeedlimitofallhighwaysis60mph.

2.2

1.

FeaturesofVehicles

Inthismodel,onlyaveragelength,speed,accelerationandotherfeaturesofvehiclesareused.Althoughthereisagreatdiversityamongdifferentvehicles,thisdifferencecanbeignoredandtheresultofthemodelwouldnotbegreatlyaffected.

Allvehiclesobeytrafficlaws.Theviolationoftrafficlawsdoesgreatharmtothedriver’shealth,publicsecurityaswellasthespeedoftotaltrafficflow.Asaresult,thesecircumstanceswouldnotoccurinourmodel:

2.

?

?

?

?

avehicleexceedsthespeedlimit;avehiclestopsfornoreason;

avehiclerunsinanemergencylaneorontheshoulderfornoreason;avehiclechangesitslanebut

itsturninglightisnotturnedoninadvance;

thevehiclebehinditshowsitsintentiontochangethelane;twovehiclesrunsidebysideinonelane;

thedistancebetweentwovehiclesinthesamelaneistooshort.

?

?

3.

Trafficaccidentisnottakenintoconsideration.DetailsofitsinfluencewillbediscussedinSection9.2.

Averagedailytrafficflowisusedinthismodel.Trafficflowvariesindifferentdays,soanaveragelevelshouldbeusedtosimplifythismodel.

Hornisnotusedinourmodel.Onhighway,theinfluenceofahornislimitedbecausethedistancebetweentwovehiclesistoolongforacomplicatedsoundsignaltobeheardandunderstoodclearly.

4.

5.

Team#55585

Page3of34

2.3

1.

SpecialFeaturesofNSDVs

Uncertaintyoftheestimationofdistanceandspeed

Comparedwithcomputersystems,humandriversaremorelikelytomakemistakes,especiallywhenitcomestotheevaluationofdistanceandspeed.Therefore,humandriverstendtoslowdownthevehicleandchoosenottochangealanewhentheycannotestimatethedistanceclearlyevenwhenothervehiclesareoutoftheminimumsafedistance.

Longerreactiontime

Humandriversneedmoretimetodecelerateandstarttheirvehiclecomparedwithself-drivingonesespeciallyonthehighway[2].

2.

2.4

1.

SpecialFeaturesofSDVs

Shortreactiontime

SDVsarecontrolledbycomputersystemswhichrunfastandcanstayactiveforthewholetime.Withmoderntechnology,itiseasyforanSDVtoperceivetheoutsideworldandmakereactionsaccordinglyinashorttime.

CooperationsamongSDVs

ThesystemofanSDVisconnectedtotheInternet,thereforeinformationofalltheSDVsonaroadisshared.Withmoreinformation,anetworkdecision-makingsystemcanbebuiltwhichismentionedinpreviousstudies[3].

Maturetechnology

Thetechnologyofself-drivingismatureenoughandnomalfunctionofSDVs’guiding,drivinganddecision-makingsystemistakenintoconsiderationinthismodel.IfanaccidentdoeshappentoanSDV’ssystem,thisSDVshouldbelabeledasanNSDV.

InteractionsbetweenanNSDVandanSDV

AsdiscussedinSection3,forahumandriver,thereisnodifferencebetweenanSDVandanNSDVthatheorsheencountersonthestreet,forSDVswouldmakelessmistakesthanNSDVsandwouldnotcausemoretroubletohumandrivers.

2.

3.

4.

3 ChoiceandBasicSettingsoftheModel

3.1

ChoiceoftheModel

Inthepastfewdecades,withthedevelopmentoftransportation,agreatvarietyofmodelssimu-

latingthetrafficwerebuiltandimproved,amongwhichContinuousMediummodelandCAmodelarethemostpopularones.LighthillandWhithamfirstlyputforwardtheconceptofcontinuous

mediummodel,whileshortlyafterwardsRichardsalsoputforwarditindependently,thereforeitisalsonamedLWRmodel[4].LWRmodelmainlyfocusesonthemacroscopichomogeneityandsta-bilityofthetrafficflow.However,inthisproblem,thecooperationsbetweenSDVsandthereactionsbetweenanSDVandanNSDVmustbefurtherdiscussed,whichmakesithardforustoadapttheLWRmodel,becauseLWRmodelneglectstheinteractionsbetweendifferentparticlesintheflow.Aftercarefulcomparison,wefindthattraditionalCAmodelwithmodificationscanbeusedinthisproblem.

Inreallife,theactionofavehicletakenbybothhumandriversandcomputersystemsdependsonthestatusofthevehicleitselfandthesurroundingtraffic,whichissimilartotherulesofCA,whichisoriginallydiscoveredinthe1940sbyStanislawUlamandJohnvonNeumann[5].ThebasicideaofCAisthatitstartswithasetofcellswithstatus.Asimplesetofrulesarecreatedthatthe

Team#55585

Page4of34

statusareupdateddependingonthestatusofthecellanditsneighbors.Withmultipleiterations,CAmodelscansimulatethemovementofcomplexobjects.ChangesaremadetothestatusandtherulesoftheoriginalCAmodelinorder,ensuringthatthismodelcanworkforamixtureofSDVsandNSDVs.InordertomakeaCAmodel,discretizationshouldbedonefirsttoalmostallvariables.

3.2

Discretization

InourCAmodels,eachvehicleisregardedasacellwithitsownstatus.Besides,eachlaneisalso

dividedintocellsthatcancontainthevehicleswhiletimeisdividedintosmallunits(turns).

Sizeofacell

TheaveragelengthofvehicleinU.S.isabitlongerthan4meters.Aseverycellrepresentsavehicle,thelengthofthecellshouldbethesameastheaveragelength.Tosimplifythecalculation,weuse

1.

1cell=4m

(3.1)

2.

Timeunit

AstheresultsofTriggs,T.J.andHarris,W.G’sworkshows,theaveragereactiontimefordriversisaround1.5seconds[2].InoneturnoftheCAmodel,avehiclemakesoneaction,so

1.5secondsisagoodchoiceforourCAmodel’stimeunit.

1turn=1.5s

(3.2)

3.3

1.

BasicSettings

Speed

Thespeedlimitofroadis60mph,whichis10cellperturn,usingEqn.(3.1)andEqn.(3.2).BecauseCAmodelisdiscretized,thespeedisregardedasanaturalnumberfrom0to10inourmodel.

Acceleration

Accordingtotheassumption,thespeedofavehicleshouldchangestepbystep.Inourmodel,thespeedcanonlychange1cellinaturn.UseEqn.(3.1)andEqn.(3.2),theaccelerationofavehicleis2.67m/s2,whichisinlinewithdailyexperience.

MinimumSafeFollowingDistance(MinSFD)

Avehicleshouldnotgettooclosetothevehicleaheadtopreventaccidentwhenrunningonahighway.MinimumSafeFollowingDistance(MinSFD)isdesignedtomakesurethatanormalvehiclerunningatacertainspeedcanstopbeforecollision.

2.

3.

4 DetailsoftheModel

InourCAmodels,rulesaremadetosimulatevehicles’movement.Amongallkindsofmove-ments,twotypesofvehicle’sactionsarethemostimportantones:followingandlane-changing.TheFollowingModelandtheMultilaneTrafficModelaremadetosimulatethesetwotypesofactions.

4.1

FollowingModel

TheFollowingModelsimulatestheflowofvehiclesinasinglelaneonthehighway.Largequan-

titiesofsingle-lanetrafficflowmodelshavebeendeveloped,themostfamousoneofwhichisthe

NaSch(NS)model.KaiNagelandMichaelSchreckenbergbuiltthisCAmodelforhighwaytrafficin1992[6].Theirmodel’ssimulationsshowatransitionfromlaminartrafficflowtostart-stopwaves

Team#55585

Page5of34

withincreasingvehicledensity.Inreallife,SDVs’behaviorisdifferentfromthenon-self-drivingones,soourmodificationsfortheNaSchmodelaremainlyfocusedontheSDVs.

4.1.1 Variables

Table1:MainVariablesUsedintheFollowingModel

Variable

Defination

Unit

di

?di

DistancebetweenvehicleNo.iandthestartpointDistancebetweenvehicleNo.iandthevehicleaheadofit

cellcell

viai

SpeedofvehicleNo.i

WhethervehicleNo.iisacceleratingornot

cell/timestepunitless

biti

StatusofthebacklightofvehicleNo.iTypeofvehicleNo.i

unitlessunitless

MinSFDbetweentwovehicleswhenthelatterone’sspeedisv

Maximumdistancebetweentwovehicleswhenthelatterone’s

Dmin(v)

cell

Dmax(v)

P1,i

cell

unitless

speedisvandtheactionoftheformeronecanbeignoredPossibilityofahumandrivertodecelerateoutofcaution

vA

A

ΔdA

BackLightOn

bi=1

BackLightOff

bi=0

SDV

NSDV

Figure1:DiagramofMainVariablesUsedintheFollowingModel

MainvariablesusedintheFollowingModelareshowninTab.4.1.1andFig.1.Specifically,Eqn.(4.3)showsthefunctionsforthestatusofthebacklightandthevehicletypeseparately:

{

0,

1,

0,

1,

thebacklightofvehicleNo.iisoffthebacklightofvehicleNo.iison

vehicleNo.iisanNSDVvehicleNo.iisanSDV

bi=

{

(4.3)

ti=

ForanNSDV,nolightsignalshowswhetheritisacceleratingornot,whichparameteraiindicates.However,thisinformationissharedamongself-drivingones,whichiswhatEqn.(4.4)shows:

{

0, vehicleNo.iisnotaccelerating

ai=

(4.4)

1, vehicleNo.iisaccelerating

A

vA

B vB

C

vC

DvD

Team#55585

Page6of34

4.1.2

?

FollowingRulesforNSDVs

Deceleration

Aswediscussedinpart1andpart2ofSection2.4,humandriverneedmoretimetoreactandtheysometimeschoosetoslowdowntomaintainalongerfollowingdistanceoutofcaution.InthisFollowingModel,ifvehicleNo.iisNon-Self-Driving,apossibilityfunctionP1,iismadeforittosimulatethetwofactorsmentionedabove.ForanNSDVA,Eqn.(4.5)showsthefunction,inwhichBrepresentsthefirstvehiclethatisinfrontofA.

P11,P12,P13,0,

bB=1∧?dA>Dmin(vA)∧?dA<Dmax(vA)bB=0∧?dA>Dmin(vA)∧?dA<Dmax(vA)vA=0

othercases

P1,A

(4.5)

=

Incalculation,weusetheresultsgotfromperviousworks[7][8]:

(4.6)

P11=0.94,P12=0.50,P13=0.20

Inshort,thereisarateforNSDVstodecelerateundercertaincircumstances.AsshowninLane1inFig.2,foranNSDVA,everyturnarandomnumberRbetween0and1isgivenintheFollowingModel,and:

P1,A?R?vA=vA?1,bA=1

Besidesthiseffect,ifthereisanothervehiclewithinvehicleA’sMinSFD,Ahastodecelerate

andturnitsbacklighton.Thatis:

?dA?Dmin(vA)?vA=vA?1,bA=1

AndthisisLane2inFig.2.

Dmax(vA)

Dmin(vA)

Deceleration

vA

Lane1

A

B

(P1,A

R)

Lane2

vA

Deceleration

A

B

vA

Acceleration

Lane3

A

B

vA

Lane4

Acceleration

A

B

Hold

vA

Lane5

A

B

(P1,A

R)

Figure2:FollowingRulesforNSDVs

?

Acceleration

IfNSDVAdoesnotdeceleratebecauseofPA,andvehicleBis

faraway,or

notdeceleratingandoutofA’sMinSFD

Team#55585

Page7of34

thenAwillaccelerate,whichareshownseparatelyinLane3andLane4inFig.2.Thatis:

P1,A<R∧?dA>Dmax(vA)∨bB=0∧?dA>Dmin(vA)

?vA=vA+1,bA=0

Hold

Onothercircumstances,anNSDVholdsitsspeed,whichisshowninLane5ofFig.2:

[OtherCircumstances]?bA=0.

(

))

(

4.1.3 FollowingRulesforSDVs

Accordingtothediscussioninpart1andpart2ofSection2.4,SDVshaveshortreactiontimeandtheycancooperatewitheachother.Consideringthatanaccidenthappensrightinfrontofastraightlineofvehicles,allvehiclesshoulddecelerateinordertokeeptheMinSFD.Iftheyarecontrolledbyhumanbeingswhosereactiontimecannotbeignored,vehicleswilldecelerateonebyonebutwithadelay.However,ifallvehiclesareself-drivingones,theycandecelerateatthesametime,thankstothecooperatingsystem.Itisthesamefortheaccelerationprocess,becauseaicanbeknownforallSDVs,whichismentionedinSection4.1.1.

AnotherfactoristhatthewaychangestocalculateminimumsafefollowingdistancebetweentwoSDVswhichonefollowsanotherclosely,becauseallSDVssharetheinformationofspeedandotherparametersoftheSDVsinfrontofthem,whichismentionedinpart2ofSection2.4.Asisalsoassumedinpart3ofSection2.4,malfunctionoftheself-drivingsystemisnottakenintoconsiderationinthismodel.ThetwoadjacentSDVscandecelerateatthesametimeifemergencyhappens,sothattheMinSFDforanSDVcanbecalculatedfollowingEqn.(4.7),inwhichtheBrakingDistanceoftheformercanberemoved.NocollisionbetweenSDVswillhappenwhenallinformationissharedanddecisionsaremadecooperatively.

BrakingDistanceE=Dmin(m(ax(vE?2,0))

)

(4.7)

(vA)=maxDmin(vA)?BrakingDistanceE+1,1

D

min(SDV?SDV)

InEqn.(4.7)EistheSDVaheadofA.

WiththechangeofDmin(SDV?SDV),thedistancebetweenSDVscanbeshortenedandtherefore

arowofpureSDVscanbeformed.WhenallthedistancesbetweentwoconsecutiveSDVsaretheir

Dmin(SDV?SDV),thischainofSDVscanbecalledaSDV-Train.ForanSDVA,ifitisinanSDV-

Train,letFbetheSDVinthefrontofthetrain.ThethreevehiclesinLane4fromFig.3formatypicalSDV-Train.

Dmax(vA)

Dmin(vA)

vA

B

Acceleration

A

Lane1

vA

A

C

Acceleration

Lane2

AvAvA

Acceleration

E

Lane3

Acceleration

(aF=1)

vA

A

Lane4

F

aSDV-Train

Figure3:FollowingRulesforSDVs:Acceleration

Team#55585

Page8of34

?

Acceleration

AnSDVacceleratesunder4conditions:

itfollowsavehicleB,andtheirdistanceislongerthanDmax(vA),thatis:

?DA?Dmax(vA)?vA=vA+1;bA=0;aA=1;

1.

whichisthesituationinLane1inFig.3;

itfollowsanNSDVC,whosebacklightisoffandtheirdistanceislongerthantheMinSFDofA,thatis:

tC=0∧bC=0∧?DA?Dmin(vA)?vA=vA+1;bA=0;aA=1;

2.

whichisthesituationinLane2inFig.3;

itfollowsanSDVE,andtheirdistanceislongerthantheDmin(SDV?SDV)ofA,thatis:

tE=1∧?DA>Dmin(SDV?SDV)(vA)?vA=vA+1;bA=0;aA=1;

whichisthesituationinLane3inFig.3;

itisina’SDV-Train’,andthefirstSDVFintrainaccelerates,thatis:

3.

4.

=1?vA=vA+1;bA=0;aA=1.

?DA

=Dmin(SDV?SDV)(vA)∧aF

whichisthesituationinLane4inFig.3.

?

Deceleration

Dmax(vA)

Dmin(vA)

Deceleration

vA

C

Lane1

A

AvAvA

Deceleration

Lane2

E

vA

Deceleration

A

F

Lane3

aSDV-Train

Figure4:FollowingRulesforSDVs:Deceleration

AnSDVdeceleratesunder3conditions:

1.itfollowsanNSDVC,andtheirdistanceisshorterthantheMinSFDofA,thatis:

tC=0∧?DA?Dmin(vA)?vA=vA?1;bA=1;aA=0;

whichisthesituationinLane1inFig.4;

2.itfollowsanSDVE,andtheirdistanceisshorterthantheDmin(SDV?SDV)ofA,thatis:

tE=1∧?DA?Dmin(SDV?SDV)(vA)?vA=vA?1;bA=1;aA=0;

whichisthesituationinLane2inFig.4;

Team#55585

Page9of34

3.itisina’SDV-Train’,andthefirstSDVFintraindecelerates,thatis:

=1?vA=vA?1;bA=1;aA=0.

?DA

=Dmin(SDV?SDV)(vA)∧bF

whichisthesituationinLane3inFig.4.

?

Hold

Onothercircumstances,anSDVholdsitsspeed:

[OtherCircumstances]?bA=0;aA=0.

TwodifferentsituationsareshowninFig.5:

Dmax(vA)

Dmin(vA)

Hold

Lane1

Hold

(aF=0)

Lane2

aSDV-Train

Figure5:FollowingRulesforSDVs:Hold

4.2

MultilaneTrafficModel

Onmultilanehighways,vehiclestendtostayonitsownlane,whichisthesameastheFollowing

ModelmentionedaboveinSection4.1.However,undercertaincircumstances,driverschangetheir

lanes.TheMultilaneTrafficModelisdesignedonthebasisoftheFollowingModeltosimulatethislane-changingaction[9].BecauseofSDVs’cooperationwitheachotherandtheformationofSDV-Trains,SDVs’rulesofchanginglanesvarywithNSDVs’.

4.2.1 Variables

Table2:AdditionalVariablesUsedintheMultilaneTrafficModel

Variable Defination

Unit

?di,j

ci

DistancebetweenvehicleNo.iandvehicleNo.jStatusoftheturninglightsofvehicleNo.i

cellunitless

NumberoflanewhichvehicleNo.iisonPossbilityofahumandriverofvehicleNo.i

unitless

li

P2,i

unitless

tochangethelanewhenconditionallows

BesidesvariableslistedinTab.4.1.1,additionalvariablesusedintheMultilaneTrafficModelarelistedinTab.4.2.1andFig.6.Specifically,Eqn.(4.8)showsthefunctionforthestatusofvehicleNo.i’sturninglights:

turninglightsofvehicleNo.iareoff

0,

ci=

1, therightturninglightofvehicleNo.iison

?1,theleftturninglightofvehicleNo.iison

(4.8)

A vA C

A vA

F

Team#55585

Page10of34

C

vC

lC=2

ΔdA,E

1

Lane

2

Lane

BothLightsOff

ci=0

RightLightOn

ci=1

LeftLightOn

ci=-1

Figure6:DiagramofAdditionalVariablesUsedintheMultilaneTrafficModel

4.2.2 GeneralRulesofChangingLanes

Asweassumedinpart2ofSection2.2,driversonlychangetheirlanewhennecessary:

Thevehicleonthesamelaneaheadisnotfarawayandisrunningmuchslower;

Thetrafficconditiononthelanebesideisbetter.

ThisiscalledLane-Changin

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論