版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年遼寧省大連市普蘭店區(qū)第二中學高三二診模擬考試數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若的二項式展開式中二項式系數的和為32,則正整數的值為()A.7 B.6 C.5 D.42.給定下列四個命題:①若一個平面內的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④3.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.4.已知函數,若關于的不等式恰有1個整數解,則實數的最大值為()A.2 B.3 C.5 D.85.已知函數,,且,則()A.3 B.3或7 C.5 D.5或86.在精準扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種7.半徑為2的球內有一個內接正三棱柱,則正三棱柱的側面積的最大值為()A. B. C. D.8.設則以線段為直徑的圓的方程是()A. B.C. D.9.已知數列對任意的有成立,若,則等于()A. B. C. D.10.已知函數,則()A.1 B.2 C.3 D.411.的展開式中的系數為()A.5 B.10 C.20 D.3012.設M是邊BC上任意一點,N為AM的中點,若,則的值為()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左、右焦點和點為某個等腰三角形的三個頂點,則雙曲線C的離心率為________.14.已知圓柱的上、下底面的中心分別為,,過直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為______.15.已知直線被圓截得的弦長為2,則的值為__16.已知為橢圓內一定點,經過引一條弦,使此弦被點平分,則此弦所在的直線方程為________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標系中,橢圓的離心率為,且過點.求橢圓的方程;已知是橢圓的內接三角形,①若點為橢圓的上頂點,原點為的垂心,求線段的長;②若原點為的重心,求原點到直線距離的最小值.18.(12分)已知的內角,,的對邊分別為,,,.(1)若,證明:.(2)若,,求的面積.19.(12分)已知數列的各項均為正數,為其前n項和,對于任意的滿足關系式.(1)求數列的通項公式;(2)設數列的通項公式是,前n項和為,求證:對于任意的正數n,總有.20.(12分)在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅持開展愛國衛(wèi)生運動,從人居環(huán)境改善、飲食習慣、社會心理健康、公共衛(wèi)生設施等多個方面開展,特別是要堅決杜絕食用野生動物的陋習,提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過問卷調查,隨機收集了該區(qū)居民六類日常生活習慣的有關數據.六類習慣是:(1)衛(wèi)生習慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規(guī)律狀況類.經過數據整理,得到下表:衛(wèi)生習慣狀況類垃圾處理狀況類體育鍛煉狀況類心理健康狀況類膳食合理狀況類作息規(guī)律狀況類有效答卷份數380550330410400430習慣良好頻率0.60.90.80.70.650.6假設每份調查問卷只調查上述六類狀況之一,各類調查是否達到良好標準相互獨立.(1)從小組收集的有效答卷中隨機選取1份,求這份試卷的調查結果是膳食合理狀況類中習慣良好者的概率;(2)從該區(qū)任選一位居民,試估計他在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣方面,至少具備兩類良好習慣的概率;(3)利用上述六類習慣調查的排序,用“”表示任選一位第k類受訪者是習慣良好者,“”表示任選一位第k類受訪者不是習慣良好者().寫出方差,,,,,的大小關系.21.(12分)已知f(x)=|x+3|-|x-2|(1)求函數f(x)的最大值m;(2)正數a,b,c滿足a+2b+3c=m,求證:22.(10分)已知數列的前n項和為,且n、、成等差數列,.(1)證明數列是等比數列,并求數列的通項公式;(2)若數列中去掉數列的項后余下的項按原順序組成數列,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由二項式系數性質,的展開式中所有二項式系數和為計算.【詳解】的二項展開式中二項式系數和為,.故選:C.【點睛】本題考查二項式系數的性質,掌握二項式系數性質是解題關鍵.2、D【解析】
利用線面平行和垂直,面面平行和垂直的性質和判定定理對四個命題分別分析進行選擇.【詳解】當兩個平面相交時,一個平面內的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選:D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查空間想象能力,是中檔題.3、B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:
直三棱柱的體積為,消去的三棱錐的體積為,
∴幾何體的體積,故選B.點睛:本題考查了由三視圖求幾何體的體積,根據三視圖判斷幾何體的形狀及相關幾何量的數據是解答此類問題的關鍵;幾何體是直三棱柱消去一個三棱錐,結合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.4、D【解析】
畫出函數的圖象,利用一元二次不等式解法可得解集,再利用數形結合即可得出.【詳解】解:函數,如圖所示當時,,由于關于的不等式恰有1個整數解因此其整數解為3,又∴,,則當時,,則不滿足題意;當時,當時,,沒有整數解當時,,至少有兩個整數解綜上,實數的最大值為故選:D【點睛】本題主要考查了根據函數零點的個數求參數范圍,屬于較難題.5、B【解析】
根據函數的對稱軸以及函數值,可得結果.【詳解】函數,若,則的圖象關于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數的概念及性質和函數的對稱性問題,屬基礎題6、C【解析】
根據題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數,由分步計數原理計算可得答案.【詳解】解:根據題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應用,涉及分步計數原理問題,屬于基礎題.7、B【解析】
設正三棱柱上下底面的中心分別為,底面邊長與高分別為,利用,可得,進一步得到側面積,再利用基本不等式求最值即可.【詳解】如圖所示.設正三棱柱上下底面的中心分別為,底面邊長與高分別為,則,在中,,化為,,,當且僅當時取等號,此時.故選:B.【點睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學生的計算能力,是一道中檔題.8、A【解析】
計算的中點坐標為,圓半徑為,得到圓方程.【詳解】的中點坐標為:,圓半徑為,圓方程為.故選:.【點睛】本題考查了圓的標準方程,意在考查學生的計算能力.9、B【解析】
觀察已知條件,對進行化簡,運用累加法和裂項法求出結果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數列中的方法,并能熟練運用對應方法求解.10、C【解析】
結合分段函數的解析式,先求出,進而可求出.【詳解】由題意可得,則.故選:C.【點睛】本題考查了求函數的值,考查了分段函數的性質,考查運算求解能力,屬于基礎題.11、C【解析】
由知,展開式中項有兩項,一項是中的項,另一項是與中含x的項乘積構成.【詳解】由已知,,因為展開式的通項為,所以展開式中的系數為.故選:C.【點睛】本題考查求二項式定理展開式中的特定項,解決這類問題要注意通項公式應寫準確,本題是一道基礎題.12、B【解析】
設,通過,再利用向量的加減運算可得,結合條件即可得解.【詳解】設,則有.又,所以,有.故選B.【點睛】本題考查了向量共線及向量運算知識,利用向量共線及向量運算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由等腰三角形及雙曲線的對稱性可知或,進而利用兩點間距離公式求解即可.【詳解】由題設雙曲線的左、右焦點分別為,,因為左、右焦點和點為某個等腰三角形的三個頂點,當時,,由可得,等式兩邊同除可得,解得(舍);當時,,由可得,等式兩邊同除可得,解得,故答案為:【點睛】本題考查求雙曲線的離心率,考查雙曲線的幾何性質的應用,考查分類討論思想.14、【解析】
設圓柱的軸截面的邊長為x,可求得,代入圓柱的表面積公式,即得解【詳解】設圓柱的軸截面的邊長為x,則由,得,∴.故答案為:【點睛】本題考查了圓柱的軸截面和表面積,考查了學生空間想象,轉化劃歸,數學運算的能力,屬于基礎題.15、1【解析】
根據弦長為半徑的兩倍,得直線經過圓心,將圓心坐標代入直線方程可解得.【詳解】解:圓的圓心為(1,1),半徑,
因為直線被圓截得的弦長為2,
所以直線經過圓心(1,1),
,解得.故答案為:1.【點睛】本題考查了直線與圓相交的性質,屬基礎題.16、【解析】
設弦所在的直線與橢圓相交于、兩點,利用點差法可求得直線的斜率,進而可求得直線的點斜式方程,化為一般式即可.【詳解】設弦所在的直線與橢圓相交于、兩點,由于點為弦的中點,則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.【點睛】本題考查利用弦的中點求弦所在直線的方程,一般利用點差法,也可以利用韋達定理設而不求法來解答,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、;①;②.【解析】
根據題意列出方程組求解即可;①由原點為的垂心可得,軸,設,則,,根據求出線段的長;②設中點為,直線與橢圓交于,兩點,為的重心,則,設:,,,則,當斜率不存在時,則到直線的距離為1,,由,則,,,得出,根據求解即可.【詳解】解:設焦距為,由題意知:,因此,橢圓的方程為:;①由題意知:,故軸,設,則,,,解得:或,,不重合,故,,故;②設中點為,直線與橢圓交于,兩點,為的重心,則,當斜率不存在時,則到直線的距離為1;設:,,,則,,則,則:,,代入式子得:,設到直線的距離為,則時,;綜上,原點到直線距離的最小值為.【點睛】本題考查橢圓的方程的知識點,結合運用向量,韋達定理和點到直線的距離的知識,屬于難題.18、(1)見解析(2)【解析】
(1)由余弦定理及已知等式得出關系,再由正弦定理可得結論;(2)由余弦定理和已知條件解得,然后由面積公式計算.【詳解】解:(1)由余弦定理得,由得到,由正弦定理得.因為,,所以.(2)由題意及余弦定理可知,①由得,即,②聯立①②解得,.所以.【點睛】本題考查利用正余弦定理解三角形.考查三角形面積公式,由已知條件本題主要是應用余弦定理求出邊.解題時要注意對條件的分析,確定選用的公式.19、(1)(2)證明見解析【解析】
(1)根據公式得到,計算得到答案.(2),根據裂項求和法計算得到,得到證明.【詳解】(1)由已知得時,,故.故數列為等比數列,且公比.又當時,,..(2)..【點睛】本題考查了數列通項公式和證明數列不等式,意在考查學生對于數列公式方法的綜合應用.20、(1)(2)(3)【解析】
(1)設“選取的試卷的調查結果是膳食合理狀況類中習慣良好者“的事件為,根據古典概型求出即可;(2)設該區(qū)“衛(wèi)生習慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,設事件為“該居民在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣方面,至少具備兩類良好習慣“,則(E),求出即可;(3)根據題意,寫出即可.【詳解】(1)設“選取的試卷的調查結果是膳食合理狀況類中習慣良好者“的事件為,有效問卷共有(份,其中受訪者中膳食合理習慣良好的人數是人,故(A);(2)設該區(qū)“衛(wèi)生習慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,根據題意,可知(A),(B),(C),設事件為“該居民在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣方面,至少具備兩類良好習慣“則.所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園工作總結童年記憶永不磨滅
- 健康會所前臺工作感受
- 水處理行業(yè)助理工作總結
- 文化娛樂行業(yè)員工績效考核實踐
- 2023-2024學年浙江省杭州四中高三(下)第一次訓練地理試卷
- 2021年江蘇省宿遷市公開招聘警務輔助人員輔警筆試自考題2卷含答案
- 2021年廣東省韶關市公開招聘警務輔助人員輔警筆試自考題2卷含答案
- 2024年安徽省合肥市公開招聘警務輔助人員輔警筆試自考題1卷含答案
- 2021年江西省鷹潭市公開招聘警務輔助人員輔警筆試自考題1卷含答案
- 《心理學與讀心術》課件
- 七年級歷史試卷上冊可打印
- 2024-2030年全球及中國洞察引擎行業(yè)市場現狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報告
- 《東南亞經濟與貿易》習題集、案例、答案、參考書目
- 燒烤店裝修合同范文模板
- 2024年中國櫻桃番茄種市場調查研究報告
- 數據分析基礎與應用指南
- 吉林市2024-2025學年度高三第一次模擬測試 (一模)數學試卷(含答案解析)
- 自考《英語二》高等教育自學考試試題與參考答案(2024年)
- 人教版(PEP)小學六年級英語上冊全冊教案
- 廣東省廣州市海珠區(qū)2023-2024學年六年級上學期月考英語試卷
- 《春秋》導讀學習通超星期末考試答案章節(jié)答案2024年
評論
0/150
提交評論