版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆四川省涼山重點中學(xué)中考數(shù)學(xué)全真模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖所示,是用直尺和圓規(guī)作一個角等于已知角的示意圖,則說明∠A′O′B′=∠AOB的依據(jù)是()A.SAS B.SSS C.AAS D.ASA2.已知等邊三角形的內(nèi)切圓半徑,外接圓半徑和高的比是()A.1:2: B.2:3:4 C.1::2 D.1:2:33.在△ABC中,AB=AC=13,BC=24,則tanB等于()A. B. C. D.4.下列說法中,正確的是()A.長度相等的弧是等弧B.平分弦的直徑垂直于弦,并且平分弦所對的兩條弧C.經(jīng)過半徑并且垂直于這條半徑的直線是圓的切線D.在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑5.(3分)如圖,是按一定規(guī)律排成的三角形數(shù)陣,按圖中數(shù)陣的排列規(guī)律,第9行從左至右第5個數(shù)是()A.2 B. C.5 D.6.如圖,A、B、C三點在正方形網(wǎng)格線的交點處,若將△ABC繞著點A逆時針旋轉(zhuǎn)得到△AC′B′,則tanB′的值為()A. B. C. D.7.PM2.5是指大氣中直徑小于或等于2.5μm(1μm=0.000001m)的顆粒物,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質(zhì),對人體健康和大氣環(huán)境質(zhì)量有很大危害.2.5μm用科學(xué)記數(shù)法可表示為()A. B. C. D.8.在下列交通標(biāo)志中,是中心對稱圖形的是()A. B.C. D.9.如圖,點P是∠AOB外的一點,點M,N分別是∠AOB兩邊上的點,點P關(guān)于OA的對稱點Q恰好落在線段MN上,點P關(guān)于OB的對稱點R落在MN的延長線上,若PM=2.5cm,PN=3cm,MN=4cm,則線段QR的長為()A.4.5cm B.5.5cm C.6.5cm D.7cm10.已知直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,那么直線y=bx-a一定不經(jīng)過(
)A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限二、填空題(共7小題,每小題3分,滿分21分)11.如圖,以AB為直徑的半圓沿弦BC折疊后,AB與相交于點D.若,則∠B=________°.12.點A(x1,y1)、B(x1,y1)在二次函數(shù)y=x1﹣4x﹣1的圖象上,若當(dāng)1<x1<1,3<x1<4時,則y1與y1的大小關(guān)系是y1_____y1.(用“>”、“<”、“=”填空)13.如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切線:若⊙O的半徑為2,則圖中陰影部分的面積為_____.14.因式分解:2b2a2﹣a3b﹣ab3=_____.15.如圖,10塊相同的長方形墻磚拼成一個長方形,設(shè)長方形墻磚的長為x厘米,則依題意列方程為_________.16.拋物線y=x2+2x+m﹣1與x軸有交點,則m的取值范圍是_____.17.把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖,已知EF=CD=80cm,則截面圓的半徑為cm.三、解答題(共7小題,滿分69分)18.(10分)如圖,在四邊形ABCD中,∠A=∠BCD=90°,,CE⊥AD于點E.(1)求證:AE=CE;(2)若tanD=3,求AB的長.19.(5分)問題:將菱形的面積五等分.小紅發(fā)現(xiàn)只要將菱形周長五等分,再將各分點與菱形的對角線交點連接即可解決問題.如圖,點O是菱形ABCD的對角線交點,AB=5,下面是小紅將菱形ABCD面積五等分的操作與證明思路,請補充完整.(1)在AB邊上取點E,使AE=4,連接OA,OE;(2)在BC邊上取點F,使BF=______,連接OF;(3)在CD邊上取點G,使CG=______,連接OG;(4)在DA邊上取點H,使DH=______,連接OH.由于AE=______+______=______+______=______+______=______.可證S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.20.(8分)如圖,在圖中求作⊙P,使⊙P滿足以線段MN為弦且圓心P到∠AOB兩邊的距離相等.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆加黑)21.(10分)如圖,已知△ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F.求證:△ABE≌△CAD;求∠BFD的度數(shù).22.(10分)如圖,AB是⊙O的直徑,BC⊥AB,垂足為點B,連接CO并延長交⊙O于點D、E,連接AD并延長交BC于點F.(1)試判斷∠CBD與∠CEB是否相等,并證明你的結(jié)論;(2)求證:(3)若BC=AB,求tan∠CDF的值.23.(12分)由于霧霾天氣對人們健康的影響,市場上的空氣凈化器成了熱銷產(chǎn)品.某公司經(jīng)銷一種空氣凈化器,每臺凈化器的成本價為200元.經(jīng)過一段時間的銷售發(fā)現(xiàn),每月的銷售量y(臺)與銷售單價x(元)的關(guān)系為y=﹣2x+1.(1)該公司每月的利潤為w元,寫出利潤w與銷售單價x的函數(shù)關(guān)系式;(2)若要使每月的利潤為40000元,銷售單價應(yīng)定為多少元?(3)公司要求銷售單價不低于250元,也不高于400元,求該公司每月的最高利潤和最低利潤分別為多少?24.(14分)如圖,在矩形ABCD中,對角線AC,BD相交于點O.(1)畫出△AOB平移后的三角形,其平移后的方向為射線AD的方向,平移的距離為AD的長.(2)觀察平移后的圖形,除了矩形ABCD外,還有一種特殊的平行四邊形?請證明你的結(jié)論.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根據(jù)SSS可得到三角形全等.【詳解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選:B.【點睛】本題主要考查了全等三角形的判定,關(guān)鍵是掌握全等三角形的判定定理.2、D【解析】試題分析:圖中內(nèi)切圓半徑是OD,外接圓的半徑是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,則OD:OC=1:2,因而OD:OC:AD=1:2:1,所以內(nèi)切圓半徑,外接圓半徑和高的比是1:2:1.故選D.考點:正多邊形和圓.3、B【解析】如圖,等腰△ABC中,AB=AC=13,BC=24,過A作AD⊥BC于D,則BD=12,在Rt△ABD中,AB=13,BD=12,則,AD=,故tanB=.故選B.【點睛】考查的是銳角三角函數(shù)的定義、等腰三角形的性質(zhì)及勾股定理.4、D【解析】
根據(jù)切線的判定,圓的知識,可得答案.【詳解】解:A、在等圓或同圓中,長度相等的弧是等弧,故A錯誤;B、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧,故B錯誤;C、經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線,故C錯誤;D、在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑,故D正確;故選:D.【點睛】本題考查了切線的判定及圓的知識,利用圓的知識及切線的判定是解題關(guān)鍵.5、B【解析】
根據(jù)三角形數(shù)列的特點,歸納出每一行第一個數(shù)的通用公式,即可求出第9行從左至右第5個數(shù).【詳解】根據(jù)三角形數(shù)列的特點,歸納出每n行第一個數(shù)的通用公式是,所以,第9行從左至右第5個數(shù)是=.故選B【點睛】本題主要考查歸納推理的應(yīng)用,根據(jù)每一行第一個數(shù)的取值規(guī)律,利用累加法求出第9行第五個數(shù)的數(shù)值是解決本題的關(guān)鍵,考查學(xué)生的推理能力.6、D【解析】
過C點作CD⊥AB,垂足為D,根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B,把求tanB′的問題,轉(zhuǎn)化為在Rt△BCD中求tanB.【詳解】過C點作CD⊥AB,垂足為D.根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故選D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)后對應(yīng)角相等;三角函數(shù)的定義及三角函數(shù)值的求法.7、C【解析】試題分析:大于0而小于1的數(shù)用科學(xué)計數(shù)法表示,10的指數(shù)是負(fù)整數(shù),其絕對值等于第一個不是0的數(shù)字前所有0的個數(shù).考點:用科學(xué)計數(shù)法計數(shù)8、C【解析】
解:A圖形不是中心對稱圖形;B不是中心對稱圖形;C是中心對稱圖形,也是軸對稱圖形;D是軸對稱圖形;不是中心對稱圖形故選C9、A【解析】試題分析:利用軸對稱圖形的性質(zhì)得出PM=MQ,PN=NR,進而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的長RN+NQ=3+2.5=3.5(cm).故選A.考點:軸對稱圖形的性質(zhì)10、D【解析】
根據(jù)直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,可以判斷a、b的正負(fù),從而可以判斷直線y=bx-a經(jīng)過哪幾個象限,不經(jīng)過哪個象限,本題得以解決.【詳解】∵直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,∴a<0,b>0,∴直線y=bx-a經(jīng)過第一、二、三象限,不經(jīng)過第四象限,故選D.【點睛】本題考查一次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.二、填空題(共7小題,每小題3分,滿分21分)11、18°【解析】
由折疊的性質(zhì)可得∠ABC=∠CBD,根據(jù)在同圓和等圓中,相等的圓周角所對的弧相等可得,再由和半圓的弧度為180°可得的度數(shù)×5=180°,即可求得的度數(shù)為36°,再由同弧所對的圓周角的度數(shù)為其弧度的一半可得∠B=18°.【詳解】解:由折疊的性質(zhì)可得∠ABC=∠CBD,∴,∵,∴的度數(shù)+的度數(shù)+的度數(shù)=180°,即的度數(shù)×5=180°,∴的度數(shù)為36°,∴∠B=18°.故答案為:18.【點睛】本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.還考查了圓弧的度數(shù)與圓周角之間的關(guān)系.12、<【解析】
先根據(jù)二次函數(shù)的解析式判斷出拋物線的開口方向及對稱軸,根據(jù)圖象上的點的橫坐標(biāo)距離對稱軸的遠(yuǎn)近來判斷縱坐標(biāo)的大?。驹斀狻坑啥魏瘮?shù)y=x1-4x-1=(x-1)1-5可知,其圖象開口向上,且對稱軸為x=1,
∵1<x1<1,3<x1<4,
∴A點橫坐標(biāo)離對稱軸的距離小于B點橫坐標(biāo)離對稱軸的距離,
∴y1<y1.
故答案為<.13、【解析】試題分析:連接OC,求出∠D和∠COD,求出邊DC長,分別求出三角形OCD的面積和扇形COB的面積,即可求出答案.連接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=2,∴陰影部分的面積是S△OCD﹣S扇形COB=×2×2﹣=2﹣π,故答案為2﹣π.考點:1.等腰三角形性質(zhì);2.三角形的內(nèi)角和定理;3.切線的性質(zhì);4.扇形的面積.14、﹣ab(a﹣b)2【解析】
首先確定公因式為ab,然后提取公因式整理即可.【詳解】2b2a2﹣a3b﹣ab3=ab(2ab-a2-b2)=﹣ab(a﹣b)2,所以答案為﹣ab(a﹣b)2.【點睛】本題考查了因式分解-提公因式法,解題的關(guān)鍵是掌握提公因式法的概念.15、x+x=75.【解析】試題解析:設(shè)長方形墻磚的長為x厘米,
可得:x+x=75.16、m≤1.【解析】
由拋物線與x軸有交點可得出方程x1+1x+m-1=0有解,利用根的判別式△≥0,即可得出關(guān)于m的一元一次不等式,解之即可得出結(jié)論.【詳解】∴關(guān)于x的一元二次方程x1+1x+m?1=0有解,∴△=11?4(m?1)=8?4m≥0,解得:m≤1.故答案為:m≤1.【點睛】本題考查的知識點是拋物線與坐標(biāo)軸的交點,解題的關(guān)鍵是熟練的掌握拋物線與坐標(biāo)軸的交點.17、1【解析】
過點O作OM⊥EF于點M,反向延長OM交BC于點N,連接OF,設(shè)OF=r,則OM=80-r,MF=40,然后在Rt△MOF中利用勾股定理求得OF的長即可.【詳解】過點O作OM⊥EF于點M,反向延長OM交BC于點N,連接OF,設(shè)OF=x,則OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案為1.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)AB=4【解析】
(1)過點B作BF⊥CE于F,根據(jù)同角的余角相等求出∠BCF=∠D,再利用“角角邊”證明△BCF和△CDE全等,根據(jù)全等三角形對應(yīng)邊相等可得BF=CE,再證明四邊形AEFB是矩形,根據(jù)矩形的對邊相等可得AE=BF,從而得證;(2)由(1)可知:CF=DE,四邊形AEFB是矩形,從而求得AB=EF,利用銳角三角函數(shù)的定義得出DE和CE的長,即可求得AB的長.【詳解】(1)證明:過點B作BH⊥CE于H,如圖1.∵CE⊥AD,∴∠BHC=∠CED=90°,∠1+∠D=90°.∵∠BCD=90°,∴∠1+∠2=90°,∴∠2=∠D.又BC=CD∴△BHC≌△CED(AAS).∴BH=CE.∵BH⊥CE,CE⊥AD,∠A=90°,∴四邊形ABHE是矩形,∴AE=BH.∴AE=CE.(2)∵四邊形ABHE是矩形,∴AB=HE.∵在Rt△CED中,,設(shè)DE=x,CE=3x,∴.∴x=2.∴DE=2,CE=3.∵CH=DE=2.∴AB=HE=3-2=4.【點睛】本題考查了全等三角形的判定與性質(zhì),矩形的判定與性質(zhì),銳角三角函數(shù)的定義,難度中等,作輔助線構(gòu)造出全等三角形與矩形是解題的關(guān)鍵.19、(1)見解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA【解析】
利用菱形四條邊相等,分別在四邊上進行截取和連接,得出AE=EB+BF=FC+CG+GD+DH=HA,進一步求得S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.即可.【詳解】(1)在AB邊上取點E,使AE=4,連接OA,OE;(2)在BC邊上取點F,使BF=3,連接OF;(3)在CD邊上取點G,使CG=2,連接OG;(4)在DA邊上取點H,使DH=1,連接OH.由于AE=EB+BF=FC+CG=GD+DH=HA.可證S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.故答案為:3,2,1;EB、BF;FC、CG;GD、DH;HA.【點睛】此題考查菱形的性質(zhì),熟練掌握菱形的四條邊相等,對角線互相垂直是解題的關(guān)鍵.20、見解析.【解析】試題分析:先做出∠AOB的角平分線,再求出線段MN的垂直平分線就得到點P.試題解析:考點:尺規(guī)作圖角平分線和線段的垂直平分線、圓的性質(zhì).21、(1)證明見解析;(2).【解析】試題分析:(1)根據(jù)等邊三角形的性質(zhì)根據(jù)SAS即可證明△ABE≌△CAD;(2)由三角形全等可以得出∠ABE=∠CAD,由外角與內(nèi)角的關(guān)系就可以得出結(jié)論.試題解析:(1)∵△ABC為等邊三角形,∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.在△ABE和△CAD中,AB=CA,∠BAC=∠C,AE=CD,∴△ABE≌△CAD(SAS),(2)∵△ABE≌△CAD,∴∠ABE=∠CAD,∵∠BAD+∠CAD=60°,∴∠BAD+∠EBA=60°,∵∠BFD=∠ABE+∠BAD,∴∠BFD=60°.22、(1)∠CBD與∠CEB相等,證明見解析;(2)證明見解析;(3)tan∠CDF=.【解析】試題分析:(1)由AB是⊙O的直徑,BC切⊙O于點B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,從而可得∠A=∠CBD,結(jié)合∠A=∠CEB即可得到∠CBD=∠CEB;(2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,從而可得△EBC∽△BDC,再由相似三角形的性質(zhì)即可得到結(jié)論;(3)設(shè)AB=2x,結(jié)合BC=AB,AB是直徑,可得BC=3x,OB=OD=x,再結(jié)合∠ABC=90°,可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,從而可得△DCF∽△BCD,由此可得:==,這樣即可得到tan∠CDF=tan∠DBF==.試題解析:(1)∠CBD與∠CEB相等,理由如下:∵BC切⊙O于點B,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,(2)∵∠C=∠C,∠CEB=∠CBD,∴∠EBC=∠BDC,∴△EBC∽△BDC,∴;(3)設(shè)AB=2x,∵BC=AB,AB是直徑,∴BC=3x,OB=OD=x,∵∠ABC=90°,∴OC=x,∴CD=(-1)x,∵AO=DO,∴∠CDF=∠A=∠DBF,∴△DCF∽△BCD,∴==,∵tan∠DBF==,∴tan∠CDF=.點睛:解答本題第3問的要點是:(1)通過證∠CDF=∠A=∠DBF,把求tan∠CDF轉(zhuǎn)化為求tan∠DBF=;(2)通過證△DCF∽△BCD,得到.23、(1)w=(x﹣200)y=(x﹣200)(﹣2x+1)=﹣2x2+1400x﹣200000;(2)令w=﹣2x2+1400x﹣200
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店大堂的安保措施介紹
- 旅游科普服務(wù)合同
- 藝術(shù)涂料施工協(xié)議
- 市政環(huán)衛(wèi)灑水車租賃合同
- 退休硬件工程師維護合同
- 租賃GPS車輛安全監(jiān)控系統(tǒng)合同
- 臨時檢驗員聘用合同模板
- 城市規(guī)劃光纖鋪設(shè)合同
- 古董家具修復(fù)噴漆協(xié)議
- 空調(diào)維修工程師聘用合同年薪制
- GB/T 13912-2020金屬覆蓋層鋼鐵制件熱浸鍍鋅層技術(shù)要求及試驗方法
- GB/T 11270.2-2021超硬磨料制品金剛石圓鋸片第2部分:燒結(jié)鋸片
- 植物生理學(xué)-植物的逆境生理
- 2017大專病理課件4局部血液循環(huán)障礙l
- 2023年考研英語(二)真題
- 小學(xué)英語人教新起點五年級上冊Unit3Animalsunit3storytime
- 乙醚MSDS危險化學(xué)品安全技術(shù)說明書
- 醫(yī)療質(zhì)量管理與持續(xù)改進工作記錄
- 幼兒園突發(fā)事件應(yīng)急處置流程圖
- 小學(xué)《信息技術(shù)》考試試題及
- 檢傷分類課件
評論
0/150
提交評論