版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年云南省昭通市鹽津縣一中高考數(shù)學(xué)一模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數(shù)組成的—個階方陣,其各行各列及兩條對角線所含的個數(shù)之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.452.已知,,若,則向量在向量方向的投影為()A. B. C. D.3.一個超級斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數(shù)列的個數(shù)為()A.3 B.4 C.5 D.64.拋擲一枚質(zhì)地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是()A. B. C. D.5.公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.126.記為數(shù)列的前項和數(shù)列對任意的滿足.若,則當(dāng)取最小值時,等于()A.6 B.7 C.8 D.97.已知數(shù)列對任意的有成立,若,則等于()A. B. C. D.8.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.639.中國古建筑借助榫卯將木構(gòu)件連接起來,構(gòu)件的凸出部分叫榫頭,凹進(jìn)部分叫卯眼,圖中木構(gòu)件右邊的小長方體是榫頭.若如圖擺放的木構(gòu)件與某一帶卯眼的木構(gòu)件咬合成長方體,則咬合時帶卯眼的木構(gòu)件的俯視圖可以是A. B. C. D.10.某校在高一年級進(jìn)行了數(shù)學(xué)競賽(總分100分),下表為高一·一班40名同學(xué)的數(shù)學(xué)競賽成績:555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學(xué)生的數(shù)學(xué)競賽成績,運行相應(yīng)的程序,輸出,的值,則()A.6 B.8 C.10 D.1211.如圖,設(shè)為內(nèi)一點,且,則與的面積之比為A. B.C. D.12.已知是空間中兩個不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,直線與圓交于兩點,,若,則弦的長度的最大值為___________.14.已知函數(shù),則曲線在點處的切線方程為___________.15.已知數(shù)列的前項和為,且成等差數(shù)列,,數(shù)列的前項和為,則滿足的最小正整數(shù)的值為______________.16.?dāng)?shù)列的前項和為,則數(shù)列的前項和_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)的最小值為,求的最小值.18.(12分)在中,,是邊上一點,且,.(1)求的長;(2)若的面積為14,求的長.19.(12分)設(shè)橢圓:的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.(1)求橢圓的標(biāo)準(zhǔn)方程.(2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標(biāo).20.(12分)在邊長為的正方形,分別為的中點,分別為的中點,現(xiàn)沿折疊,使三點重合,構(gòu)成一個三棱錐.(1)判別與平面的位置關(guān)系,并給出證明;(2)求多面體的體積.21.(12分)已知等差數(shù)列和等比數(shù)列的各項均為整數(shù),它們的前項和分別為,且,.(1)求數(shù)列,的通項公式;(2)求;(3)是否存在正整數(shù),使得恰好是數(shù)列或中的項?若存在,求出所有滿足條件的的值;若不存在,說明理由.22.(10分)已知函數(shù)().(1)討論的單調(diào)性;(2)若對,恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點睛】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項和公式,屬于基礎(chǔ)題.2、B【解析】
由,,,再由向量在向量方向的投影為化簡運算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題3、A【解析】
根據(jù)定義,表示出數(shù)列的通項并等于2020.結(jié)合的正整數(shù)性質(zhì)即可確定解的個數(shù).【詳解】由題意可知首項為2,設(shè)第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當(dāng)?shù)闹悼梢詾椋患从?個這種超級斐波那契數(shù)列,故選:A.【點睛】本題考查了數(shù)列新定義的應(yīng)用,注意自變量的取值范圍,對題意理解要準(zhǔn)確,屬于中檔題.4、A【解析】
首先求出樣本空間樣本點為個,再利用分類計數(shù)原理求出三個正面向上為連續(xù)的3個“1”的樣本點個數(shù),再求出重復(fù)數(shù)量,可得事件的樣本點數(shù),根據(jù)古典概型的概率計算公式即可求解.【詳解】樣本空間樣本點為個,具體分析如下:記正面向上為1,反面向上為0,三個正面向上為連續(xù)的3個“1”,有以下3種位置1____,__1__,____1.剩下2個空位可是0或1,這三種排列的所有可能分別都是,但合并計算時會有重復(fù),重復(fù)數(shù)量為,事件的樣本點數(shù)為:個.故不同的樣本點數(shù)為8個,.故選:A【點睛】本題考查了分類計數(shù)原理與分步計數(shù)原理,古典概型的概率計算公式,屬于基礎(chǔ)題5、C【解析】
由開始,按照框圖,依次求出s,進(jìn)行判斷?!驹斀狻浚蔬xC.【點睛】框圖問題,依據(jù)框圖結(jié)構(gòu),依次準(zhǔn)確求出數(shù)值,進(jìn)行判斷,是解題關(guān)鍵。6、A【解析】
先令,找出的關(guān)系,再令,得到的關(guān)系,從而可求出,然后令,可得,得出數(shù)列為等差數(shù)列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對任意的,所以是等差數(shù)列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當(dāng)時,取最小值.故選:A【點睛】此題考查的是由數(shù)列的遞推式求數(shù)列的通項,采用了賦值法,屬于中檔題.7、B【解析】
觀察已知條件,對進(jìn)行化簡,運用累加法和裂項法求出結(jié)果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數(shù)列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進(jìn)行求和,需要掌握數(shù)列中的方法,并能熟練運用對應(yīng)方法求解.8、B【解析】
根據(jù)程序框圖中的循環(huán)結(jié)構(gòu)的運算,直至滿足條件退出循環(huán)體,即可得出結(jié)果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果,模擬程序運行是解題的關(guān)鍵,屬于基礎(chǔ)題.9、A【解析】
詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進(jìn)去的,即俯視圖中應(yīng)有一不可見的長方形,且俯視圖應(yīng)為對稱圖形故俯視圖為故選A.點睛:本題主要考查空間幾何體的三視圖,考查學(xué)生的空間想象能力,屬于基礎(chǔ)題。10、D【解析】
根據(jù)程序框圖判斷出的意義,由此求得的值,進(jìn)而求得的值.【詳解】由題意可得的取值為成績大于等于90的人數(shù),的取值為成績大于等于60且小于90的人數(shù),故,,所以.故選:D【點睛】本小題考查利用程序框圖計算統(tǒng)計量等基礎(chǔ)知識;考查運算求解能力,邏輯推理能力和數(shù)學(xué)應(yīng)用意識.11、A【解析】
作交于點,根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結(jié)果.【詳解】如圖,作交于點,則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點睛】本題考查三角函數(shù)與向量的結(jié)合,三角形面積公式,屬基礎(chǔ)題,作出合適的輔助線是本題的關(guān)鍵.12、D【解析】
利用線面平行和垂直的判定定理和性質(zhì)定理,對選項做出判斷,舉出反例排除.【詳解】解:對于,當(dāng),且,則與的位置關(guān)系不定,故錯;對于,當(dāng)時,不能判定,故錯;對于,若,且,則與的位置關(guān)系不定,故錯;對于,由可得,又,則故正確.故選:.【點睛】本題考查空間線面位置關(guān)系.判斷線面位置位置關(guān)系利用好線面平行和垂直的判定定理和性質(zhì)定理.一般可借助正方體模型,以正方體為主線直觀感知并準(zhǔn)確判斷.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
取的中點為M,由可得,可得M在上,當(dāng)最小時,弦的長才最大.【詳解】設(shè)為的中點,,即,即,,.設(shè),則,得.所以,.故答案為:【點睛】本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,考查學(xué)生的邏輯推理、數(shù)形結(jié)合的思想,是一道有一定難度的題.14、【解析】
根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,利用點斜式求切線方程.【詳解】因為,所以,又故切線方程為,整理為,故答案為:【點睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于容易題.15、1【解析】
本題先根據(jù)公式初步找到數(shù)列的通項公式,然后根據(jù)等差中項的性質(zhì)可解得的值,即可確定數(shù)列的通項公式,代入數(shù)列的表達(dá)式計算出數(shù)列的通項公式,然后運用裂項相消法計算出前項和,再代入不等式進(jìn)行計算可得最小正整數(shù)的值.【詳解】由題意,當(dāng)時,.當(dāng)時,.則,.,,成等差數(shù)列,,即,解得..,...,.即,,即,,,,即.滿足的最小正整數(shù)的值為1.故答案為:1.【點睛】本題主要考查數(shù)列求通項公式、裂項相消法求前項和,考查了轉(zhuǎn)化思想、方程思想,考查了不等式的計算、邏輯思維能力和數(shù)學(xué)運算能力.16、【解析】
解:兩式作差,得,經(jīng)過檢驗得出數(shù)列的通項公式,進(jìn)而求得的通項公式,裂項相消求和即可.【詳解】解:兩式作差,得化簡得,檢驗:當(dāng)n=1時,,所以數(shù)列是以2為首項,2為公比的等比數(shù)列;,,令故填:.【點睛】本題考查求數(shù)列的通項公式,裂項相消求數(shù)列的前n項和,解題過程中需要注意n的范圍以及對特殊項的討論,側(cè)重考查運算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)用分類討論思想去掉絕對值符號后可解不等式;(2)由(1)得的最小值為4,則由,代換后用基本不等式可得最小值.【詳解】解:(1)討論:當(dāng)時,,即,此時無解;當(dāng)時,;當(dāng)時,.所求不等式的解集為(2)分析知,函數(shù)的最小值為4,當(dāng)且僅當(dāng)時等號成立.的最小值為4.【點睛】本題考查解絕對值不等式,考查用基本不等式求最小值.解絕對值不等式的方法是分類討論思想.18、(1)1;(2)5.【解析】
(1)由同角三角函數(shù)關(guān)系求得,再由兩角差的正弦公式求得,最后由正弦定理構(gòu)建方程,求得答案.(2)在中,由正弦定理構(gòu)建方程求得AB,再由任意三角形的面積公式構(gòu)建方程求得BC,最后由余弦定理構(gòu)建方程求得AC.【詳解】(1)據(jù)題意,,且,所以.所以.在中,據(jù)正弦定理可知,,所以.(2)在中,據(jù)正弦定理可知,所以.因為的面積為14,所以,即,得.在中,據(jù)余弦定理可知,,所以.【點睛】本題考查由正弦定理與余弦定理解三角形,還考查了由同角三角函數(shù)關(guān)系和兩角差的正弦公式化簡求值,屬于簡單題.19、(1);(2)證明見解析,.【解析】
(1)根據(jù)離心率和的面積是得到方程組,計算得到答案.(2)先排除斜率為0時的情況,設(shè),,聯(lián)立方程組利用韋達(dá)定理得到,,根據(jù)化簡得到,代入直線方程得到答案.【詳解】(1)由題意可得,解得,,則橢圓的標(biāo)準(zhǔn)方程是.(2)當(dāng)直線的斜率為0時,直線與直線關(guān)于軸對稱,則直線與直線的斜率之和為零,與題設(shè)條件矛盾,故直線的斜率不為0.設(shè),,直線的方程為聯(lián)立,整理得則,.因為直線與直線的斜率之和為1,所以,所以,將,代入上式,整理得.所以,即,則直線的方程為.故直線恒過定點.【點睛】本題考查了橢圓的標(biāo)準(zhǔn)方程,直線過定點問題,計算出是解題的關(guān)鍵,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.20、(1)平行,證明見解析;(2).【解析】
(1)由題意及圖形的翻折規(guī)律可知應(yīng)是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【詳解】(1)證明:因翻折后、、重合,∴應(yīng)是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【點睛】本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎(chǔ)題.21、(1);(2);(3)存在,1.【解析】
(1)利用基本量法直接計算即可;(2)利用錯位相減法計算;(3),令可得,,討論即可.【詳解】(1)設(shè)數(shù)列的公差為,數(shù)列的公比為,因為,所以,即,解得,或(舍去).所以.(2),,所以,所以.(3)由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年西安貨運從業(yè)資格證模擬考試0題題庫答案
- 2025年江西貨運從業(yè)資格證模擬考試下載題
- 2025年南陽貨車上崗證理論模擬考試題庫
- 2025年吐魯番道路客貨運輸從業(yè)資格證b2考試題庫
- 2025年上饒貨運資格證模擬考試卷
- 以學(xué)促創(chuàng)學(xué)生自主創(chuàng)新能力培養(yǎng)的新路徑
- 2025年吳忠a2貨運從業(yè)資格證模擬考試
- 創(chuàng)業(yè)者如何通過商業(yè)計劃書提升企業(yè)估值
- 2025年六安道路運輸從業(yè)人員資格考試內(nèi)容有哪些
- 2025年怒江從業(yè)資格證模擬考試題下載貨運
- 高校人力資源管理系統(tǒng)
- 03船舶證書一覽表
- 國外發(fā)達(dá)國家中水回用現(xiàn)狀
- 墻體構(gòu)造設(shè)計
- 成人哮喘生命質(zhì)量評分表
- 相親相愛一家人簡譜
- 數(shù)字油畫-社團(tuán)活動記錄課件
- 燃?xì)饧t外線輻射采暖技術(shù)交底
- 液壓系統(tǒng)課件(完整)課件
- 驗收合格證明(共9頁)
- 蘇強格命名規(guī)則
評論
0/150
提交評論