高中數(shù)學(xué)知識點(diǎn)口訣總結(jié)_第1頁
高中數(shù)學(xué)知識點(diǎn)口訣總結(jié)_第2頁
高中數(shù)學(xué)知識點(diǎn)口訣總結(jié)_第3頁
高中數(shù)學(xué)知識點(diǎn)口訣總結(jié)_第4頁
高中數(shù)學(xué)知識點(diǎn)口訣總結(jié)_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

中學(xué)數(shù)學(xué)學(xué)問點(diǎn)口訣總結(jié)

中學(xué)數(shù)學(xué)學(xué)問點(diǎn)口訣總結(jié)

數(shù)學(xué)是人類對事物的抽象結(jié)構(gòu)與模式進(jìn)行嚴(yán)格描述的一種通用手段,可以應(yīng)用于現(xiàn)實(shí)世界的任何問題,全部的數(shù)學(xué)對象本質(zhì)上都是人為定義的。下面是整理的中學(xué)數(shù)學(xué)學(xué)問點(diǎn)口訣總結(jié),歡迎大家共享。

一、《集合與函數(shù)》

內(nèi)容子交并補(bǔ)集,還有冪指對函數(shù)。性質(zhì)奇偶與增減,視察圖象最明顯。

復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要具體證明它,還須將那定義抓。

指數(shù)與對數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。

函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無對數(shù);

正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實(shí)數(shù)集,多種狀況求交集。

兩個互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對稱,Y=X是對稱軸;

求解特別有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。

冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),

奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。

二、《三角函數(shù)》

三角函數(shù)是函數(shù),象限符號坐標(biāo)注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。

同角關(guān)系很重要,化簡證明都須要。正六邊形頂點(diǎn)處,從上到下弦切割;

中心記上數(shù)字1,連結(jié)頂點(diǎn)三角形;向下三角平方和,倒數(shù)關(guān)系是對角,

頂點(diǎn)隨意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,

變成稅角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,

將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,

余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

計(jì)算證明角先行,留意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。

逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

萬能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;

1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范;

三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

利用直角三角形,形象直觀好換名,簡潔三角的方程,化為最簡求解集;

三、《不等式》

解不等式的途徑,利用函數(shù)的性質(zhì)。對指無理不等式,化為有理不等式。

高次向著低次代,步步轉(zhuǎn)化要等價。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。

證不等式的方法,實(shí)數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭高下。

干脆困難分析好,思路清楚綜合法。非負(fù)常用基本式,正面難則反證法。

還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來幫助,畫圖建模構(gòu)造法。

四、《數(shù)列》

等差等比兩數(shù)列,通項(xiàng)公式N項(xiàng)和。兩個有限求極限,四則運(yùn)算依次換。

數(shù)列問題多變化,方程化歸整體算。數(shù)列求和比較難,錯位相消巧轉(zhuǎn)換,

取長補(bǔ)短高斯法,裂項(xiàng)求和公式算。歸納思想特別好,編個程序好思索:

一算二看三聯(lián)想,猜想證明不行少。還有數(shù)學(xué)歸納法,證明步驟程序化:

首先驗(yàn)證再假定,從K向著K加1,推論過程須詳盡,歸納原理來確定。

五、《復(fù)數(shù)》

虛數(shù)單位i一出,數(shù)集擴(kuò)大到復(fù)數(shù)。一個復(fù)數(shù)一對數(shù),橫縱坐標(biāo)實(shí)虛部。

對應(yīng)復(fù)平面上點(diǎn),原點(diǎn)與它連成箭。箭桿與X軸正向,所成便是輻角度。

箭桿的長即是模,常將數(shù)形來結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。

代數(shù)運(yùn)算的實(shí)質(zhì),有i多項(xiàng)式運(yùn)算。i的正整數(shù)次慕,四個數(shù)值周期現(xiàn)。

一些重要的結(jié)論,熟記巧用得結(jié)果。虛實(shí)互化本事大,復(fù)數(shù)相等來轉(zhuǎn)化。

利用方程思想解,留意整體代換術(shù)。幾何運(yùn)算圖上看,加法平行四邊形,

減法三角法則判;乘法除法的.運(yùn)算,逆向順向做旋轉(zhuǎn),伸縮全年模長短。

三角形式的運(yùn)算,須將輻角和模辨。利用棣莫弗公式,乘方開方極便利。

輻角運(yùn)算很奇妙,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,

兩個不會為實(shí)數(shù),比較大小要不得。復(fù)數(shù)實(shí)數(shù)很親密,須留意本質(zhì)區(qū)分。

六、《排列、組合、二項(xiàng)式定理》

加法乘法兩原理,貫穿始終的法則。與序無關(guān)是組合,要求有序是排列。

兩個公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問題須轉(zhuǎn)化。

排列組合在一起,先選后排是常理。特殊元素和位置,首先留意多考慮。

不重不漏多思索,捆綁插空是技巧。排列組合恒等式,定義證明建模試。

關(guān)于二項(xiàng)式定理,中國楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。

七、《立體幾何》

點(diǎn)線面三位一體,柱錐臺球?yàn)榇?。距離都從點(diǎn)動身,角度皆為線線成。

垂直平行是重點(diǎn),證明須弄清概念。線線線面和面面、三對之間循環(huán)現(xiàn)。

方程思想整體求,化歸意識動割補(bǔ)。計(jì)算之前須證明,畫好移出的圖形。

立體幾何協(xié)助線,常用垂線和平面。射影概念很重要,對于解題最關(guān)鍵。

異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問題一大片。

八、《平面解析幾何》

有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標(biāo),數(shù)形結(jié)合稱典范。

笛卡爾的觀點(diǎn)對,點(diǎn)和有序?qū)崝?shù)對,兩者—一來對應(yīng),開創(chuàng)幾何新途徑。

兩種思想相輝映,化歸思想打前陣;都說待定系數(shù)法,實(shí)為方程組思想。

三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。

四件工具是法寶,坐標(biāo)思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求。

拓展:中學(xué)數(shù)學(xué)必修學(xué)問點(diǎn)總結(jié)

一、平面的基本性質(zhì)與推論

1、平面的基本性質(zhì):

公理1假如一條直線的兩點(diǎn)在一個平面內(nèi),那么這條直線在這個平面內(nèi);

公理2過不在一條直線上的三點(diǎn),有且只有一個平面;

公理3假如兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。

2、空間點(diǎn)、直線、平面之間的位置關(guān)系:

直線與直線—平行、相交、異面;

直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);

平面與平面—平行、相交。

3、異面直線:

平面外一點(diǎn)A與平面一點(diǎn)B的連線和平面內(nèi)不經(jīng)過點(diǎn)B的直線是異面直線(判定);

所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補(bǔ)角);

兩條直線不是異面直線,則兩條直線平行或相交(反證);

異面直線不同在任何一個平面內(nèi)。

求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角

二、空間中的平行關(guān)系

1、直線與平面平行(核心)

定義:直線和平面沒有公共點(diǎn)

判定:不在一個平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)

性質(zhì):一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行

2、平面與平面平行

定義:兩個平面沒有公共點(diǎn)

判定:一個平面內(nèi)有兩條相交直線平行于另一個平面,則這兩個平面平行

性質(zhì):兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;假如兩個平行平面同時與第三個平面相交,那么它們的交線平行。

3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線

三、空間中的垂直關(guān)系

1、直線與平面垂直

定義:直線與平面內(nèi)隨意一條直線都垂直

判定:假如一條直線與一個平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直

性質(zhì):垂直于同始終線的兩平面平行

推論:假如在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面

直線和平面所成的角:度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特殊規(guī)定垂直90度,在平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論