版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省江門市恩平市達標(biāo)名校2023-2024學(xué)年中考猜題數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,△ABC是⊙O的內(nèi)接三角形,∠BOC=120°,則∠A等于()A.50° B.60° C.55° D.65°2.下列各數(shù)中,比﹣1大1的是()A.0B.1C.2D.﹣33.施工隊要鋪設(shè)1000米的管道,因在中考期間需停工2天,每天要比原計劃多施工30米才能按時完成任務(wù).設(shè)原計劃每天施工x米,所列方程正確的是()A.=2 B.=2C.=2 D.=24.已知,兩數(shù)在數(shù)軸上對應(yīng)的點如圖所示,下列結(jié)論正確的是()A. B. C. D.5.如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體()A.主視圖不變,左視圖不變B.左視圖改變,俯視圖改變C.主視圖改變,俯視圖改變D.俯視圖不變,左視圖改變6.如圖,將含60°角的直角三角板ABC繞頂點A順時針旋轉(zhuǎn)45°度后得到△AB′C′,點B經(jīng)過的路徑為弧BB′,若∠BAC=60°,AC=1,則圖中陰影部分的面積是()A. B. C. D.π7.關(guān)于的分式方程解為,則常數(shù)的值為()A. B. C. D.8.二次函數(shù)的圖象如圖所示,則一次函數(shù)與反比例函數(shù)在同一坐標(biāo)系內(nèi)的圖象大致為()A. B. C. D.9.自2013年10月總書記提出“精準(zhǔn)扶貧”的重要思想以來.各地積極推進精準(zhǔn)扶貧,加大幫扶力度.全國脫貧人口數(shù)不斷增加.僅2017年我國減少的貧困人口就接近1100萬人.將1100萬人用科學(xué)記數(shù)法表示為()A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人10.函數(shù)y=中自變量x的取值范圍是()A.x≥-1且x≠1 B.x≥-1 C.x≠1 D.-1≤x<1二、填空題(共7小題,每小題3分,滿分21分)11.將一些形狀相同的小五角星如圖所示的規(guī)律擺放,據(jù)此規(guī)律,第10個圖形有_______個五角星.12.如圖所示,三角形ABC的面積為1cm1.AP垂直∠B的平分線BP于P.則與三角形PBC的面積相等的長方形是()A.B.C.D.13.對于實數(shù)a,b,我們定義符號max{a,b}的意義為:當(dāng)a≥b時,max{a,b}=a;當(dāng)a<b時,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若關(guān)于x的函數(shù)為y=max{x+3,﹣x+1},則該函數(shù)的最小值是_____.14.計算:3﹣(﹣2)=____.15.如果一個矩形的面積是40,兩條對角線夾角的正切值是,那么它的一條對角線長是__________.16.如圖,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分線MN交AC于D,連接DB,若tan∠CBD=,則BD=_____.17.算術(shù)平方根等于本身的實數(shù)是__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,點C的對應(yīng)點C′恰好落在CB的延長線上,邊AB交邊C′D′于點E.(1)求證:BC=BC′;(2)若AB=2,BC=1,求AE的長.19.(5分)如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.求二次函數(shù)y=ax2+2x+c的表達式;連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標(biāo);當(dāng)點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標(biāo)和四邊形ACPB的最大面積.20.(8分)如圖1,正方形ABCD的邊長為8,動點E從點D出發(fā),在線段DC上運動,同時點F從點B出發(fā),以相同的速度沿射線AB方向運動,當(dāng)點E運動到終點C時,點F也停止運動,連接AE交對角線BD于點N,連接EF交BC于點M,連接AM.(參考數(shù)據(jù):sin15°=,cos15°=,tan15°=2﹣)(1)在點E、F運動過程中,判斷EF與BD的位置關(guān)系,并說明理由;(2)在點E、F運動過程中,①判斷AE與AM的數(shù)量關(guān)系,并說明理由;②△AEM能為等邊三角形嗎?若能,求出DE的長度;若不能,請說明理由;(3)如圖2,連接NF,在點E、F運動過程中,△ANF的面積是否變化,若不變,求出它的面積;若變化,請說明理由.21.(10分)程大位是珠算發(fā)明家,他的名著《直指算法統(tǒng)宗》詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用書中有如下問題:一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚得幾?。馑际牵河?00個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人?22.(10分)如圖1,經(jīng)過原點O的拋物線y=ax2+bx(a≠0)與x軸交于另一點A(,0),在第一象限內(nèi)與直線y=x交于點B(2,t).(1)求這條拋物線的表達式;(2)在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標(biāo);(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標(biāo);若不存在,請說明理由.23.(12分)某農(nóng)場急需銨肥8噸,在該農(nóng)場南北方向分別有一家化肥公司A、B,A公司有銨肥3噸,每噸售價750元;B公司有銨肥7噸,每噸售價700元,汽車每千米的運輸費用b(單位:元/千米)與運輸重量a(單位:噸)的關(guān)系如圖所示.(1)根據(jù)圖象求出b關(guān)于a的函數(shù)解析式(包括自變量的取值范圍);(2)若農(nóng)場到B公司的路程是農(nóng)場到A公司路程的2倍,農(nóng)場到A公司的路程為m千米,設(shè)農(nóng)場從A公司購買x噸銨肥,購買8噸銨肥的總費用為y元(總費用=購買銨肥費用+運輸費用),求出y關(guān)于x的函數(shù)解析式(m為常數(shù)),并向農(nóng)場建議總費用最低的購買方案.24.(14分)制作一種產(chǎn)品,需先將材料加熱達到60℃后,再進行操作,設(shè)該材料溫度為y(℃)從加熱開始計算的時間為x(min).據(jù)了解,當(dāng)該材料加熱時,溫度y與時間x成一次函數(shù)關(guān)系:停止加熱進行操作時,溫度y與時間x成反比例關(guān)系(如圖).已知在操作加熱前的溫度為15℃,加熱5分鐘后溫度達到60℃.分別求出將材料加熱和停止加熱進行操作時,y與x的函數(shù)關(guān)系式;根據(jù)工藝要求,當(dāng)材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
由圓周角定理即可解答.【詳解】∵△ABC是⊙O的內(nèi)接三角形,∴∠A=∠BOC,而∠BOC=120°,∴∠A=60°.故選B.【點睛】本題考查了圓周角定理,熟練運用圓周角定理是解決問題的關(guān)鍵.2、A【解析】
用-1加上1,求出比-1大1的是多少即可.【詳解】∵-1+1=1,∴比-1大1的是1.故選:A.【點睛】本題考查了有理數(shù)加法的運算,解題的關(guān)鍵是要熟練掌握:“先符號,后絕對值”.3、A【解析】分析:設(shè)原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù):原計劃所用時間﹣實際所用時間=2,列出方程即可.詳解:設(shè)原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù)題意,可列方程:=2,故選A.點睛:本題考查了由實際問題抽象出分式方程,關(guān)鍵是讀懂題意,找出合適的等量關(guān)系,列出方程.4、C【解析】
根據(jù)各點在數(shù)軸上位置即可得出結(jié)論.【詳解】由圖可知,b<a<0,A.
∵b<a<0,∴a+b<0,故本選項錯誤;B.
∵b<a<0,∴ab>0,故本選項錯誤;C.
∵b<a<0,∴a>b,故本選項正確;D.
∵b<a<0,∴b?a<0,故本選項錯誤.故選C.5、A【解析】
分別得到將正方體①移走前后的三視圖,依此即可作出判斷.【詳解】將正方體①移走前的主視圖為:第一層有一個正方形,第二層有四個正方形,正方體①移走后的主視圖為:第一層有一個正方形,第二層有四個正方形,沒有改變。將正方體①移走前的左視圖為:第一層有一個正方形,第二層有兩個正方形,正方體①移走后的左視圖為:第一層有一個正方形,第二層有兩個正方形,沒有發(fā)生改變。將正方體①移走前的俯視圖為:第一層有四個正方形,第二層有兩個正方形,正方體①移走后的俯視圖為:第一層有四個正方形,第二層有兩個正方形,發(fā)生改變。故選A.【點睛】考查了三視圖,從幾何體的正面,左面,上面看到的平面圖形中正方形的列數(shù)以及每列正方形的個數(shù)是解決本題的關(guān)鍵.6、A【解析】試題解析:如圖,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC?BC=.根據(jù)旋轉(zhuǎn)的性質(zhì)知△ABC≌△AB′C′,則S△ABC=S△AB′C′,AB=AB′.∴S陰影=S扇形ABB′+S△AB′C′-S△ABC==.故選A.考點:1.扇形面積的計算;2.旋轉(zhuǎn)的性質(zhì).7、D【解析】
根據(jù)分式方程的解的定義把x=4代入原分式方程得到關(guān)于a的一次方程,解得a的值即可.【詳解】解:把x=4代入方程,得,解得a=1.經(jīng)檢驗,a=1是原方程的解故選D.點睛:此題考查了分式方程的解,分式方程注意分母不能為2.8、D【解析】
根據(jù)二次函數(shù)圖象開口向上得到a>0,再根據(jù)對稱軸確定出b,根據(jù)二次函數(shù)圖形與軸的交點個數(shù),判斷的符號,根據(jù)圖象發(fā)現(xiàn)當(dāng)x=1時y=a+b+c<0,然后確定出一次函數(shù)圖象與反比例函數(shù)圖象的情況,即可得解.【詳解】∵二次函數(shù)圖象開口方向向上,∴a>0,∵對稱軸為直線∴b<0,二次函數(shù)圖形與軸有兩個交點,則>0,∵當(dāng)x=1時y=a+b+c<0,∴的圖象經(jīng)過第二四象限,且與y軸的正半軸相交,反比例函數(shù)圖象在第二、四象限,只有D選項圖象符合.故選:D.【點睛】考查反比例函數(shù)的圖象,一次函數(shù)的圖象,二次函數(shù)的圖象,掌握函數(shù)圖象與系數(shù)的關(guān)系是解題的關(guān)鍵.9、B【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:1100萬=11000000=1.1×107.故選B.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.10、A【解析】分析:根據(jù)分式的分母不為0;偶次根式被開方數(shù)大于或等于0;當(dāng)一個式子中同時出現(xiàn)這兩點時,應(yīng)該是取讓兩個條件都滿足的公共部分.詳解:根據(jù)題意得到:,解得x≥-1且x≠1,故選A.點睛:本題考查了函數(shù)自變量的取值范圍問題,判斷一個式子是否有意義,應(yīng)考慮分母上若有字母,字母的取值不能使分母為零,二次根號下字母的取值應(yīng)使被開方數(shù)為非負數(shù).易錯易混點:學(xué)生易對二次根式的非負性和分母不等于0混淆.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】尋找規(guī)律:不難發(fā)現(xiàn),第1個圖形有3=22-1個小五角星;第2個圖形有8=32-1個小五角星;第3個圖形有15=42-1個小五角星;…第n個圖形有(n+1)2-1個小五角星.∴第10個圖形有112-1=1個小五角星.12、B【解析】
過P點作PE⊥BP,垂足為P,交BC于E,根據(jù)AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可證明三角形PBC的面積.【詳解】解:過P點作PE⊥BP,垂足為P,交BC于E,∵AP垂直∠B的平分線BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面積=三角形ABC的面積=cm1,選項中只有B的長方形面積為cm1,故選B.13、2【解析】試題分析:當(dāng)x+3≥﹣x+1,即:x≥﹣1時,y=x+3,∴當(dāng)x=﹣1時,ymin=2,當(dāng)x+3<﹣x+1,即:x<﹣1時,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴ymin=2,14、2+2【解析】
根據(jù)平面向量的加法法則計算即可.【詳解】3﹣(﹣2)=3﹣+2=2+2,故答案為:2+2,【點睛】本題考查平面向量,熟練掌握平面向量的加法法則是解題的關(guān)鍵.15、1.【解析】
如圖,作BH⊥AC于H.由四邊形ABCD是矩形,推出OA=OC=OD=OB,設(shè)OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由題意:21a×4a=40,求出a即可解決問題.【詳解】如圖,作BH⊥AC于H.∵四邊形ABCD是矩形,∴OA=OC=OD=OB,設(shè)OA=OC=OD=OB=5a.∵tan∠BOH,∴BH=4a,OH=3a,由題意:21a×4a=40,∴a=1,∴AC=1.故答案為:1.【點睛】本題考查了矩形的性質(zhì)、解直角三角形等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題.16、2.【解析】
由tan∠CBD==設(shè)CD=3a、BC=4a,據(jù)此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.【詳解】解:在Rt△BCD中,∵tan∠CBD==,
∴設(shè)CD=3a、BC=4a,
則BD=AD=5a,
∴AC=AD+CD=5a+3a=8a,
在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
解得:a=或a=-(舍),
則BD=5a=2,
故答案為2.【點睛】本題考查線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),勾股定理的應(yīng)用,解題關(guān)鍵是熟記性質(zhì)與定理并準(zhǔn)確識圖.17、0或1【解析】根據(jù)負數(shù)沒有算術(shù)平方根,一個正數(shù)的算術(shù)平方根只有一個,1和0的算術(shù)平方根等于本身,即可得出答案.解:1和0的算術(shù)平方根等于本身.故答案為1和0“點睛”本題考查了算術(shù)平方根的知識,注意掌握1和0的算術(shù)平方根等于本身.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)AE=.【解析】
(1)連結(jié)AC、AC′,根據(jù)矩形的性質(zhì)得到∠ABC=90°,即AB⊥CC′,根據(jù)旋轉(zhuǎn)的性質(zhì)即可得到結(jié)論;(2)根據(jù)矩形的性質(zhì)得到AD=BC,∠D=∠ABC′=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得到BC′=AD′,AD=AD′,證得BC′=AD′,根據(jù)全等三角形的性質(zhì)得到BE=D′E,設(shè)AE=x,則D′E=2﹣x,根據(jù)勾股定理列方程即可得到結(jié)論.【詳解】解::(1)連結(jié)AC、AC′,∵四邊形ABCD為矩形,∴∠ABC=90°,即AB⊥CC′,∵將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,∴AC=AC′,∴BC=BC′;(2)∵四邊形ABCD為矩形,∴AD=BC,∠D=∠ABC′=90°,∵BC=BC′,∴BC′=AD′,∵將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,∴AD=AD′,∴BC′=AD′,在△AD′E與△C′BE中∴△AD′E≌△C′BE,∴BE=D′E,設(shè)AE=x,則D′E=2﹣x,在Rt△AD′E中,∠D′=90°,由勾定理,得x2﹣(2﹣x)2=1,解得x=,∴AE=.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),三角形全等的判定和性質(zhì),勾股定理的應(yīng)用等,熟練掌握性質(zhì)定理是解題的關(guān)鍵.19、(1)y=﹣x2+2x+3(2)(,)(3)當(dāng)點P的坐標(biāo)為(,)時,四邊形ACPB的最大面積值為【解析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)菱形的對角線互相垂直且平分,可得P點的縱坐標(biāo),根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得P點坐標(biāo);(3)根據(jù)平行于y軸的直線上兩點間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得PQ的長,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案.【詳解】(1)將點B和點C的坐標(biāo)代入函數(shù)解析式,得解得二次函數(shù)的解析式為y=﹣x2+2x+3;(2)若四邊形POP′C為菱形,則點P在線段CO的垂直平分線上,如圖1,連接PP′,則PE⊥CO,垂足為E,∵C(0,3),∴∴點P的縱坐標(biāo),當(dāng)時,即解得(不合題意,舍),∴點P的坐標(biāo)為(3)如圖2,P在拋物線上,設(shè)P(m,﹣m2+2m+3),設(shè)直線BC的解析式為y=kx+b,將點B和點C的坐標(biāo)代入函數(shù)解析式,得解得直線BC的解析為y=﹣x+3,設(shè)點Q的坐標(biāo)為(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.當(dāng)y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,S四邊形ABPC=S△ABC+S△PCQ+S△PBQ當(dāng)m=時,四邊形ABPC的面積最大.當(dāng)m=時,,即P點的坐標(biāo)為當(dāng)點P的坐標(biāo)為時,四邊形ACPB的最大面積值為.【點睛】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用菱形的性質(zhì)得出P點的縱坐標(biāo),又利用了自變量與函數(shù)值的對應(yīng)關(guān)系;解(3)的關(guān)鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì).20、(1)EF∥BD,見解析;(2)①AE=AM,理由見解析;②△AEM能為等邊三角形,理由見解析;(3)△ANF的面積不變,理由見解析【解析】
(1)依據(jù)DE=BF,DE∥BF,可得到四邊形DBFE是平行四邊形,進而得出EF∥DB;(2)依據(jù)已知條件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等邊三角形,則∠EAM=60°,依據(jù)△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即當(dāng)DE=16?8時,△AEM是等邊三角形;(3)設(shè)DE=x,過點N作NP⊥AB,反向延長PN交CD于點Q,則NQ⊥CD,依據(jù)△DEN∽△BNA,即可得出PN=,根據(jù)S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面積不變.【詳解】解:(1)EF∥BD.證明:∵動點E從點D出發(fā),在線段DC上運動,同時點F從點B出發(fā),以相同的速度沿射線AB方向運動,∴DE=BF,又∵DE∥BF,∴四邊形DBFE是平行四邊形,∴EF∥DB;(2)①AE=AM.∵EF∥BD,∴∠F=∠ABD=45°,∴MB=BF=DE,∵正方形ABCD,∴∠ADC=∠ABC=90°,AB=AD,∴△ADE≌△ABM,∴AE=AM;②△AEM能為等邊三角形.若△AEM是等邊三角形,則∠EAM=60°,∵△ADE≌△ABM,∴∠DAE=∠BAM=15°,∵tan∠DAE=,AD=8,∴2﹣=,∴DE=16﹣8,即當(dāng)DE=16﹣8時,△AEM是等邊三角形;(3)△ANF的面積不變.設(shè)DE=x,過點N作NP⊥AB,反向延長PN交CD于點Q,則NQ⊥CD,∵CD∥AB,∴△DEN∽△BNA,∴=,∴,∴PN=,∴S△ANF=AF×PN=×(x+8)×=32,即△ANF的面積不變.【點睛】本題屬于四邊形綜合題,主要考查了平行四邊形的判定與性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),解直角三角形以及相似三角形的判定與性質(zhì)的綜合運用,解決問題的關(guān)鍵是作輔助線構(gòu)造相似三角形,利用全等三角形的對應(yīng)邊相等,相似三角形的對應(yīng)邊成比例得出結(jié)論.21、大和尚有25人,小和尚有75人.【解析】
設(shè)大和尚有x人,小和尚有y人,根據(jù)100個和尚吃100個饅頭且1個大和尚分3個、3個小和尚分1個,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論.【詳解】解:設(shè)大和尚有x人,小和尚有y人,依題意,得:,解得:.答:大和尚有25人,小和尚有75人.【點睛】考查了二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.22、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】
(1)由直線解析式可求得B點坐標(biāo),由A、B坐標(biāo),利用待定系數(shù)法可求得拋物線的表達式;(2)過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,可設(shè)出C點坐標(biāo),利用C點坐標(biāo)可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關(guān)于C點坐標(biāo)的方程,可求得C點坐標(biāo);(3)設(shè)MB交y軸于點N,則可證得△ABO≌△NBO,可求得N點坐標(biāo),可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點坐標(biāo),過M作MG⊥y軸于點G,由B、C的坐標(biāo)可求得OB和OC的長,由相似三角形的性質(zhì)可求得的值,當(dāng)點P在第一象限內(nèi)時,過P作PH⊥x軸于點H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點坐標(biāo);當(dāng)P點在第三象限時,同理可求得P點坐標(biāo).【詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點坐標(biāo)代入拋物線解析式可得:,解得:,∴拋物線解析式為;(2)如圖1,過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,∵點C是拋物線上第四象限的點,∴可設(shè)C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面積為2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.設(shè)MB交y軸于點N,如圖2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可設(shè)直線BN解析式為y=kx+,把B點坐標(biāo)代入可得2=2k+,解得k=,∴直線BN的解析式為,聯(lián)立直線BN和拋物線解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴,∠POC=∠BOM,當(dāng)點P在第一象限時,如圖3,過M作MG⊥y軸于點G,過P作PH⊥x軸于點H,如圖3∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴∵M(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);當(dāng)點P在第三象限時,如圖4,過M作MG⊥y軸于點G,過P作PH⊥y軸于點H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);綜上可知:存在滿足條件的點P,其坐標(biāo)為(,)或(﹣,).【點睛】本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、三角形的面積、二次函數(shù)的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、方程思想及分類討論
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工節(jié)水措施
- 空調(diào)清洗施工方案及流程
- 工程施工承諾書范文
- 教師暑假培訓(xùn)心得體會范文
- 證券綜合電子平臺交易協(xié)議
- 網(wǎng)上證券委托代理交易協(xié)議
- 上市企業(yè)債券協(xié)議
- 公司與村委會合作協(xié)議范本
- 2025年中頻爐承包合同范本
- 2025主播合同模板
- 教你炒紅爐火版00纏論大概
- 消防管道施工合同
- 大學(xué)生計算與信息化素養(yǎng)-北京林業(yè)大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 2023年中國社會科學(xué)院外國文學(xué)研究所專業(yè)技術(shù)人員招聘3人(共500題含答案解析)筆試歷年難、易錯考點試題含答案附詳解
- 2023年廣東石油化工學(xué)院公開招聘部分新機制合同工20名高頻考點題庫(共500題含答案解析)模擬練習(xí)試卷
- 2023年國開大學(xué)期末考復(fù)習(xí)題-3987《Web開發(fā)基礎(chǔ)》
- 《駱駝祥子》1-24章每章練習(xí)題及答案
- 《伊利乳業(yè)集團盈利能力研究》文獻綜述3000字
- 減鹽防控高血壓培訓(xùn)課件
- 2023年百一測評-房地產(chǎn)企業(yè)崗位招聘工程副總經(jīng)理筆試試題
- 英語課presentation中國麻將-Chinese-mahjong
評論
0/150
提交評論