版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年重慶市彭水縣重點(diǎn)名校十校聯(lián)考最后數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知一個(gè)多邊形的內(nèi)角和是外角和的2倍,則此多邊形的邊數(shù)為()A.6 B.7 C.8 D.92.如圖,已知△ABC中,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于()A.90° B.135° C.270° D.315°3.在一個(gè)不透明的盒子里有2個(gè)紅球和n個(gè)白球,這些球除顏色外其余完全相同,搖勻后隨機(jī)摸出一個(gè),摸到紅球的概率是,則n的值為()A.10 B.8 C.5 D.34.關(guān)于x的正比例函數(shù),y=(m+1)若y隨x的增大而減小,則m的值為()A.2 B.-2 C.±2 D.-5.下列“數(shù)字圖形”中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的有()A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)6.如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連接AO并延長(zhǎng)交⊙O于點(diǎn)E,連接EC,若AB=8,CD=2,則cos∠ECB為()A. B. C. D.7.將三粒均勻的分別標(biāo)有,,,,,的正六面體骰子同時(shí)擲出,朝上一面上的數(shù)字分別為,,,則,,正好是直角三角形三邊長(zhǎng)的概率是()A. B. C. D.8.如圖,是由一個(gè)圓柱體和一個(gè)長(zhǎng)方體組成的幾何體,其主視圖是()A. B. C. D.9.如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)P在x軸上,若以P,O,A為頂點(diǎn)的三角形是等腰三角形,則滿足條件的點(diǎn)P共有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)10.-5的倒數(shù)是A. B.5 C.- D.-511.如圖是由若干個(gè)小正方體塊搭成的幾何體的俯視圖,小正方塊中的數(shù)字表示在該位置的小正方體塊的個(gè)數(shù),那么這個(gè)幾何體的主視圖是()A. B. C. D.12.廣西2017年參加高考的學(xué)生約有365000人,將365000這個(gè)數(shù)用科學(xué)記數(shù)法表示為()A.3.65×103 B.3.65×104 C.3.65×105 D.3.65×106二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.要使式子有意義,則的取值范圍是__________.14.關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,那么的取值范圍是__________.15.ABCD為矩形的四個(gè)頂點(diǎn),AB=16cm,AD=6cm,動(dòng)點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動(dòng),一直到達(dá)B為止,點(diǎn)Q以2cm/s的速度向D移動(dòng),P、Q兩點(diǎn)從出發(fā)開(kāi)始到__________秒時(shí),點(diǎn)P和點(diǎn)Q的距離是10cm.16.分解因式___________17.若關(guān)于x的方程x2-mx+m=0有兩個(gè)相等實(shí)數(shù)根,則代數(shù)式2m2-8m+3的值為_(kāi)_________.18.已知n>1,M=,N=,P=,則M、N、P的大小關(guān)系為.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖所示,在△ABC中,AB=CB,以BC為直徑的⊙O交AC于點(diǎn)E,過(guò)點(diǎn)E作⊙O的切線交AB于點(diǎn)F.(1)求證:EF⊥AB;(2)若AC=16,⊙O的半徑是5,求EF的長(zhǎng).20.(6分)為厲行節(jié)能減排,倡導(dǎo)綠色出行,今年3月以來(lái).“共享單車”(俗稱“小黃車”)公益活動(dòng)登陸我市中心城區(qū).某公司擬在甲、乙兩個(gè)街道社區(qū)投放一批“小黃車”,這批自行車包括A、B兩種不同款型,請(qǐng)回答下列問(wèn)題:?jiǎn)栴}1:?jiǎn)蝺r(jià)該公司早期在甲街區(qū)進(jìn)行了試點(diǎn)投放,共投放A、B兩型自行車各50輛,投放成本共計(jì)7500元,其中B型車的成本單價(jià)比A型車高10元,A、B兩型自行車的單價(jià)各是多少?問(wèn)題2:投放方式該公司決定采取如下投放方式:甲街區(qū)每1000人投放a輛“小黃車”,乙街區(qū)每1000人投放輛“小黃車”,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個(gè)街區(qū)共有15萬(wàn)人,試求a的值.21.(6分)如圖,點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)B的坐標(biāo)為(0,﹣2),把點(diǎn)A繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到的點(diǎn)C恰好在拋物線y=ax2上,點(diǎn)P是拋物線y=ax2上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O重合),把點(diǎn)P向下平移2個(gè)單位得到動(dòng)點(diǎn)Q,則:(1)直接寫(xiě)出AB所在直線的解析式、點(diǎn)C的坐標(biāo)、a的值;(2)連接OP、AQ,當(dāng)OP+AQ獲得最小值時(shí),求這個(gè)最小值及此時(shí)點(diǎn)P的坐標(biāo);(3)是否存在這樣的點(diǎn)P,使得∠QPO=∠OBC,若不存在,請(qǐng)說(shuō)明理由;若存在,請(qǐng)你直接寫(xiě)出此時(shí)P點(diǎn)的坐標(biāo).22.(8分)()如圖①已知四邊形中,,BC=b,,求:①對(duì)角線長(zhǎng)度的最大值;②四邊形的最大面積;(用含,的代數(shù)式表示)()如圖②,四邊形是某市規(guī)劃用地的示意圖,經(jīng)測(cè)量得到如下數(shù)據(jù):,,,,請(qǐng)你利用所學(xué)知識(shí)探索它的最大面積(結(jié)果保留根號(hào))23.(8分)如圖,某反比例函數(shù)圖象的一支經(jīng)過(guò)點(diǎn)A(2,3)和點(diǎn)B(點(diǎn)B在點(diǎn)A的右側(cè)),作BC⊥y軸,垂足為點(diǎn)C,連結(jié)AB,AC.求該反比例函數(shù)的解析式;若△ABC的面積為6,求直線AB的表達(dá)式.24.(10分)如圖,小巷左石兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.25.(10分)如圖,AB為⊙O的直徑,點(diǎn)C,D在⊙O上,且點(diǎn)C是的中點(diǎn),過(guò)點(diǎn)C作AD的垂線EF交直線AD于點(diǎn)E.(1)求證:EF是⊙O的切線;(2)連接BC,若AB=5,BC=3,求線段AE的長(zhǎng).26.(12分)某校七年級(jí)(1)班班主任對(duì)本班學(xué)生進(jìn)行了“我最喜歡的課外活動(dòng)”的調(diào)查,并將調(diào)查結(jié)果分為書(shū)法和繪畫(huà)類記為A;音樂(lè)類記為B;球類記為C;其他類記為D.根據(jù)調(diào)查結(jié)果發(fā)現(xiàn)該班每個(gè)學(xué)生都進(jìn)行了等級(jí)且只登記了一種自己最喜歡的課外活動(dòng).班主任根據(jù)調(diào)查情況把學(xué)生都進(jìn)行了歸類,并制作了如下兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:七年級(jí)(1)班學(xué)生總?cè)藬?shù)為_(kāi)______人,扇形統(tǒng)計(jì)圖中D類所對(duì)應(yīng)扇形的圓心角為_(kāi)____度,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;學(xué)校將舉行書(shū)法和繪畫(huà)比賽,每班需派兩名學(xué)生參加,A類4名學(xué)生中有兩名學(xué)生擅長(zhǎng)書(shū)法,另兩名擅長(zhǎng)繪畫(huà).班主任現(xiàn)從A類4名學(xué)生中隨機(jī)抽取兩名學(xué)生參加比賽,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長(zhǎng)書(shū)法,另一名擅長(zhǎng)繪畫(huà)的概率.27.(12分)如圖,∠AOB=45°,點(diǎn)M,N在邊OA上,點(diǎn)P是邊OB上的點(diǎn).(1)利用直尺和圓規(guī)在圖1確定點(diǎn)P,使得PM=PN;(2)設(shè)OM=x,ON=x+4,①若x=0時(shí),使P、M、N構(gòu)成等腰三角形的點(diǎn)P有個(gè);②若使P、M、N構(gòu)成等腰三角形的點(diǎn)P恰好有三個(gè),則x的值是____________.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】試題分析:根據(jù)多邊形的外角和是310°,即可求得多邊形的內(nèi)角的度數(shù)為720°,依據(jù)多邊形的內(nèi)角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故選A.考點(diǎn):多邊形的內(nèi)角和定理以及多邊形的外角和定理2、C【解析】
根據(jù)四邊形的內(nèi)角和與直角三角形中兩個(gè)銳角關(guān)系即可求解.【詳解】解:∵四邊形的內(nèi)角和為360°,直角三角形中兩個(gè)銳角和為90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故選:C.【點(diǎn)睛】此題主要考查角度的求解,解題的關(guān)鍵是熟知四邊形的內(nèi)角和為360°.3、B【解析】∵摸到紅球的概率為,∴,解得n=8,故選B.4、B【解析】
根據(jù)正比例函數(shù)定義可得m2-3=1,再根據(jù)正比例函數(shù)的性質(zhì)可得m+1<0,再解即可.【詳解】由題意得:m2-3=1,且m+1<0,解得:m=-2,故選:B.【點(diǎn)睛】此題主要考查了正比例函數(shù)的性質(zhì)和定義,關(guān)鍵是掌握正比例函數(shù)y=kx(k≠0)的自變量指數(shù)為1,當(dāng)k<0時(shí),y隨x的增大而減?。?、C【解析】
根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念判斷即可.【詳解】第一個(gè)圖形不是軸對(duì)稱圖形,是中心對(duì)稱圖形;第二、三、四個(gè)圖形是軸對(duì)稱圖形,也是中心對(duì)稱圖形;故選:C.【點(diǎn)睛】本題考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.6、D【解析】
連接EB,設(shè)圓O半徑為r,根據(jù)勾股定理可求出半徑r=4,從而可求出EB的長(zhǎng)度,最后勾股定理即可求出CE的長(zhǎng)度.利用銳角三角函數(shù)的定義即可求出答案.【詳解】解:連接EB,由圓周角定理可知:∠B=90°,設(shè)⊙O的半徑為r,由垂徑定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:CE=2,∴cos∠ECB==,故選D.【點(diǎn)睛】本題考查垂徑定理,涉及勾股定理,垂直定理,解方程等知識(shí),綜合程度較高,屬于中等題型.7、C【解析】
三粒均勻的正六面體骰子同時(shí)擲出共出現(xiàn)216種情況,而邊長(zhǎng)能構(gòu)成直角三角形的數(shù)字為3、4、5,含這三個(gè)數(shù)字的情況有6種,故由概率公式計(jì)算即可.【詳解】解:因?yàn)閷⑷>鶆虻姆謩e標(biāo)有1,2,3,4,5,6的正六面體骰子同時(shí)擲出,按出現(xiàn)數(shù)字的不同共=216種情況,其中數(shù)字分別為3,4,5,是直角三角形三邊長(zhǎng)時(shí),有6種情況,所以其概率為,故選C.【點(diǎn)睛】本題考查的是概率的求法.如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.邊長(zhǎng)為3,4,5的三角形組成直角三角形.8、B【解析】試題分析:長(zhǎng)方體的主視圖為矩形,圓柱的主視圖為矩形,根據(jù)立體圖形可得:主視圖的上面和下面各為一個(gè)矩形,且下面矩形的長(zhǎng)比上面矩形的長(zhǎng)要長(zhǎng)一點(diǎn),兩個(gè)矩形的寬一樣大小.考點(diǎn):三視圖.9、C【解析】
分為三種情況:①AP=OP,②AP=OA,③OA=OP,分別畫(huà)出即可.【詳解】如圖,分OP=AP(1點(diǎn)),OA=AP(1點(diǎn)),OA=OP(2點(diǎn))三種情況討論.∴以P,O,A為頂點(diǎn)的三角形是等腰三角形,則滿足條件的點(diǎn)P共有4個(gè).故選C.【點(diǎn)睛】本題考查了等腰三角形的判定和坐標(biāo)與圖形的性質(zhì),主要考查學(xué)生的動(dòng)手操作能力和理解能力,注意不要漏解.10、C【解析】
若兩個(gè)數(shù)的乘積是1,我們就稱這兩個(gè)數(shù)互為倒數(shù).【詳解】解:5的倒數(shù)是.故選C.11、B【解析】
根據(jù)俯視圖可確定主視圖的列數(shù)和每列小正方體的個(gè)數(shù).【詳解】由俯視圖可得,主視圖一共有兩列,左邊一列由兩個(gè)小正方體組成,右邊一列由3個(gè)小正方體組成.故答案選B.【點(diǎn)睛】由幾何體的俯視圖可確定該幾何體的主視圖和左視圖.12、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:將365000這個(gè)數(shù)用科學(xué)記數(shù)法表示為3.65×1.故選C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】
根據(jù)二次根式被開(kāi)方數(shù)必須是非負(fù)數(shù)的條件可得關(guān)于x的不等式,解不等式即可得.【詳解】由題意得:2-x≥0,解得:x≤2,故答案為x≤2.14、且【解析】分析:根據(jù)一元二次方程的定義以及根的判別式的意義可得△=4-12m>1且m≠1,求出m的取值范圍即可.詳解:∵一元二次方程mx2-2x+3=1有兩個(gè)不相等的實(shí)數(shù)根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<且m≠1,故答案為:m<且m≠1.點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c為常數(shù))根的判別式△=b2-4ac.當(dāng)△>1,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=1,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<1,方程沒(méi)有實(shí)數(shù)根.也考查了一元二次方程的定義.15、或【解析】
作PH⊥CD,垂足為H,設(shè)運(yùn)動(dòng)時(shí)間為t秒,用t表示線段長(zhǎng),用勾股定理列方程求解.【詳解】設(shè)P,Q兩點(diǎn)從出發(fā)經(jīng)過(guò)t秒時(shí),點(diǎn)P,Q間的距離是10cm,作PH⊥CD,垂足為H,則PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD?DH?CQ=|16?5t|,由勾股定理,得解得即P,Q兩點(diǎn)從出發(fā)經(jīng)過(guò)1.6或4.8秒時(shí),點(diǎn)P,Q間的距離是10cm.故答案為或.【點(diǎn)睛】考查矩形的性質(zhì),勾股定理,解一元二次方程等,表示出HQ=CD?DH?CQ=|16?5t|是解題的關(guān)鍵.16、【解析】
原式提取公因式,再利用完全平方公式分解即可.【詳解】原式=2x(y2+2y+1)=2x(y+1)2,故答案為2x(y+1)2【點(diǎn)睛】此題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.17、1.【解析】
根據(jù)方程的系數(shù)結(jié)合根的判別式即可得出△=m2﹣4m=0,將其代入2m2﹣8m+1中即可得出結(jié)論.【詳解】∵關(guān)于x的方程x2﹣mx+m=0有兩個(gè)相等實(shí)數(shù)根,∴△=(﹣m)2﹣4m=m2﹣4m=0,∴2m2﹣8m+1=2(m2﹣4m)+1=1.故答案為1.【點(diǎn)睛】本題考查了根的判別式,熟練掌握“當(dāng)△=0時(shí),方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根”是解題的關(guān)鍵.18、M>P>N【解析】∵n>1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M最大;,∴,∴M>P>N.點(diǎn)睛:本題考查了不等式的性質(zhì)和利用作差法比較兩個(gè)代數(shù)式的大小.作差法比較大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本題還用到了不等式的傳遞性,即如果a>b,b>c,那么a>b>c.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)證明見(jiàn)解析;(2)4.8.【解析】
(1)連結(jié)OE,根據(jù)等腰三角形的性質(zhì)可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,兩直線平行即可判定OE∥AB,又因EF是⊙O的切線,根據(jù)切線的性質(zhì)可得EF⊥OE,由此即可證得EF⊥AB;(2)連結(jié)BE,根據(jù)直徑所對(duì)的圓周角為直角可得,∠BEC=90°,再由等腰三角形三線合一的性質(zhì)求得AE=EC=8,在Rt△BEC中,根據(jù)勾股定理求的BE=6,再由△ABE的面積=△BEC的面積,根據(jù)直角三角形面積的兩種表示法可得8×6=10×EF,由此即可求得EF=4.8.【詳解】(1)證明:連結(jié)OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切線,∴EF⊥OE,∴EF⊥AB.(2)連結(jié)BE.∵BC是⊙O的直徑,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面積=△BEC的面積,即8×6=10×EF,∴EF=4.8.【點(diǎn)睛】本題考查了切線的性質(zhì)定理、圓周角定理、等腰三角形的性質(zhì)與判定、勾股定理及直角三角形的兩種面積求法等知識(shí)點(diǎn),熟練運(yùn)算這些知識(shí)是解決問(wèn)題的關(guān)鍵.20、問(wèn)題1:A、B兩型自行車的單價(jià)分別是70元和80元;問(wèn)題2:a的值為1【解析】
問(wèn)題1:設(shè)A型車的成本單價(jià)為x元,則B型車的成本單價(jià)為(x+10)元,依題意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B兩型自行車的單價(jià)分別是70元和80元;問(wèn)題2:由題可得,×1000+×1000=10000,解得a=1,經(jīng)檢驗(yàn):a=1是分式方程的解,故a的值為1.21、(1)a=;(2)OP+AQ的最小值為2,此時(shí)點(diǎn)P的坐標(biāo)為(﹣1,);(3)P(﹣4,8)或(4,8),【解析】
(1)利用待定系數(shù)法求出直線AB解析式,根據(jù)旋轉(zhuǎn)性質(zhì)確定出C的坐標(biāo),代入二次函數(shù)解析式求出a的值即可;(2)連接BQ,可得PQ與OB平行,而PQ=OB,得到四邊形PQBO為平行四邊形,當(dāng)Q在線段AB上時(shí),求出OP+AQ的最小值,并求出此時(shí)P的坐標(biāo)即可;(3)存在這樣的點(diǎn)P,使得∠QPO=∠OBC,如備用圖所示,延長(zhǎng)PQ交x軸于點(diǎn)H,設(shè)此時(shí)點(diǎn)P的坐標(biāo)為(m,m2),根據(jù)正切函數(shù)定義確定出m的值,即可確定出P的坐標(biāo).【詳解】解:(1)設(shè)直線AB解析式為y=kx+b,把A(﹣4,0),B(0,﹣2)代入得:,解得:,∴直線AB的解析式為y=﹣x﹣2,根據(jù)題意得:點(diǎn)C的坐標(biāo)為(2,2),把C(2,2)代入二次函數(shù)解析式得:a=;(2)連接BQ,則易得PQ∥OB,且PQ=OB,∴四邊形PQBO是平行四邊形,∴OP=BQ,∴OP+AQ=BQ+AQ≥AB=2,(等號(hào)成立的條件是點(diǎn)Q在線段AB上),∵直線AB的解析式為y=﹣x﹣2,∴可設(shè)此時(shí)點(diǎn)Q的坐標(biāo)為(t,﹣t﹣2),于是,此時(shí)點(diǎn)P的坐標(biāo)為(t,﹣t),∵點(diǎn)P在拋物線y=x2上,∴﹣t=t2,解得:t=0或t=﹣1,∴當(dāng)t=0,點(diǎn)P與點(diǎn)O重合,不合題意,應(yīng)舍去,∴OP+AQ的最小值為2,此時(shí)點(diǎn)P的坐標(biāo)為(﹣1,);(3)P(﹣4,8)或(4,8),如備用圖所示,延長(zhǎng)PQ交x軸于點(diǎn)H,設(shè)此時(shí)點(diǎn)P的坐標(biāo)為(m,m2),則tan∠HPO=,又,易得tan∠OBC=,當(dāng)tan∠HPO=tan∠OBC時(shí),可使得∠QPO=∠OBC,于是,得,解得:m=±4,所以P(﹣4,8)或(4,8).【點(diǎn)睛】此題屬于二次函數(shù)綜合題,涉及的知識(shí)有:二次函數(shù)的圖象與性質(zhì),待定系數(shù)法求一次函數(shù)解析式,旋轉(zhuǎn)的性質(zhì),以及銳角三角函數(shù)定義,熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.22、(1)①;②;(2)150+475+475.【解析】
(1)①由條件可知AC為直徑,可知BD長(zhǎng)度的最大值為AC的長(zhǎng),可求得答案;②連接AC,求得AD2+CD2,利用不等式的性質(zhì)可求得AD?CD的最大值,從而可求得四邊形ABCD面積的最大值;(2)連接AC,延長(zhǎng)CB,過(guò)點(diǎn)A做AE⊥CB交CB的延長(zhǎng)線于E,可先求得△ABC的面積,結(jié)合條件可求得∠D=45°,且A、C、D三點(diǎn)共圓,作AC、CD中垂線,交點(diǎn)即為圓心O,當(dāng)點(diǎn)D與AC的距離最大時(shí),△ACD的面積最大,AC的中垂線交圓O于點(diǎn)D',交AC于F,F(xiàn)D'即為所求最大值,再求得
△ACD′的面積即可.【詳解】(1)①因?yàn)椤螧=∠D=90°,所以四邊形ABCD是圓內(nèi)接四邊形,AC為圓的直徑,則BD長(zhǎng)度的最大值為AC,此時(shí)BD=,②連接AC,則AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=ADCD≤(AD2+CD2)=(a2+b2),所以四邊形ABCD的最大面積=(a2+b2)+ab=;(2)如圖,連接AC,延長(zhǎng)CB,過(guò)點(diǎn)A作AE⊥CB交CB的延長(zhǎng)線于E,因?yàn)锳B=20,∠ABE=180°-∠ABC=60°,所以AE=ABsin60°=10,EB=ABcos60°=10,S△ABC=AEBC=150,因?yàn)锽C=30,所以EC=EB+BC=40,AC==10,因?yàn)椤螦BC=120°,∠BAD+∠BCD=195°,所以∠D=45°,則△ACD中,∠D為定角,對(duì)邊AC為定邊,所以,A、C、D點(diǎn)在同一個(gè)圓上,做AC、CD中垂線,交點(diǎn)即為圓O,如圖,當(dāng)點(diǎn)D與AC的距離最大時(shí),△ACD的面積最大,AC的中垂線交圓O于點(diǎn)D’,交AC于F,F(xiàn)D’即為所求最大值,連接OA、OC,∠AOC=2∠AD’C=90°,OA=OC,所以△AOC,△AOF等腰直角三角形,AO=OD’=5,OF=AF==5,D’F=5+5,S△ACD’=ACD’F=5×(5+5)=475+475,所以Smax=S△ABC+S△ACD=150+475+475.【點(diǎn)睛】本題為圓的綜合應(yīng)用,涉及知識(shí)點(diǎn)有圓周角定理、不等式的性質(zhì)、解直角三角形及轉(zhuǎn)化思想等.在(1)中注意直徑是最長(zhǎng)的弦,在(2)中確定出四邊形ABCD面積最大時(shí),D點(diǎn)的位置是解題的關(guān)鍵.本題考查知識(shí)點(diǎn)較多,綜合性很強(qiáng),計(jì)算量很大,難度適中.23、(1)y;(2)yx+1.【解析】
(1)把A的坐標(biāo)代入反比例函數(shù)的解析式即可求得;(2)作AD⊥BC于D,則D(2,b),即可利用a表示出AD的長(zhǎng),然后利用三角形的面積公式即可得到一個(gè)關(guān)于b的方程,求得b的值,進(jìn)而求得a的值,根據(jù)待定系數(shù)法,可得答案.【詳解】(1)由題意得:k=xy=2×3=6,∴反比例函數(shù)的解析式為y;(2)設(shè)B點(diǎn)坐標(biāo)為(a,b),如圖,作AD⊥BC于D,則D(2,b),∵反比例函數(shù)y的圖象經(jīng)過(guò)點(diǎn)B(a,b),∴b,∴AD=3,∴S△ABCBC?ADa(3)=6,解得a=6,∴b1,∴B(6,1),設(shè)AB的解析式為y=kx+b,將A(2,3),B(6,1)代入函數(shù)解析式,得,解得:,所以直線AB的解析式為yx+1.【點(diǎn)睛】本題考查了利用待定系數(shù)法求反比例函數(shù)以及一次函數(shù)解析式,熟練掌握待定系數(shù)法以及正確表示出BC,AD的長(zhǎng)是解題的關(guān)鍵.24、2.7米.【解析】
先根據(jù)勾股定理求出AB的長(zhǎng),同理可得出BD的長(zhǎng),進(jìn)而可得出結(jié)論.【詳解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的寬度CD為2.7米.【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問(wèn)題時(shí)勾股定理與方程的結(jié)合是解決實(shí)際問(wèn)題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫(huà)出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.25、(1)證明見(jiàn)解析(2)【解析】
(1)連接OC,根據(jù)等腰三角形的性質(zhì)、平行線的判定得到OC∥AE,得到OC⊥EF,根據(jù)切線的判定定理證明;(2)根據(jù)勾股定理求出AC,證明△AEC∽△ACB,根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可.【詳解】(1)證明:連接OC,∵OA=OC,∴∠OCA=∠BAC,∵點(diǎn)C是的中點(diǎn),∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切線;(2)解:∵AB為⊙O的直徑,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°,∴△AEC∽△ACB,∴,∴AE=.【點(diǎn)睛】本題考查的是切線的判定、圓周角定理以及相似三角形的判定和性質(zhì),掌握切線的判定定理、直徑所對(duì)的圓周角是直角是解題的關(guān)鍵.26
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF 2169-2024氘燈光譜輻射照度(200 nm~400 nm)校準(zhǔn)規(guī)范
- GB/T 44644.2-2024道路車輛50 Ω阻抗射頻連接系統(tǒng)接口第2部分:測(cè)試方法
- 江蘇省泰州市姜堰區(qū)2024-2025學(xué)年七年級(jí)上學(xué)期11月期中生物試題(無(wú)答案)
- 安徽省亳州市黌學(xué)英才中學(xué)2024-2025學(xué)年七年級(jí)上學(xué)期期中生物學(xué)試題(含答案)
- 數(shù)據(jù)中心項(xiàng)目申請(qǐng)報(bào)告
- 阜陽(yáng)師范大學(xué)《運(yùn)動(dòng)解剖學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 阜陽(yáng)師范大學(xué)《漢英筆譯二》2022-2023學(xué)年第一學(xué)期期末試卷
- 人教版三年級(jí)下冊(cè)品德與社會(huì)教案
- 福建師范大學(xué)《語(yǔ)言與統(tǒng)計(jì)學(xué)入門》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《書(shū)法篆刻二》2022-2023學(xué)年第一學(xué)期期末試卷
- 期中綜合檢測(cè)(1-4單元)(試題)- 2024-2025學(xué)年二年級(jí)上冊(cè)數(shù)學(xué)人教版
- 滬粵版初中物理八上八年級(jí)上學(xué)期物理期中試卷(解析版)
- 江蘇省蘇州市蘇州工業(yè)園區(qū)蘇州工業(yè)園區(qū)景城學(xué)校2023-2024學(xué)年八年級(jí)上學(xué)期期中數(shù)學(xué)試題(解析版)
- 高中挺身式跳遠(yuǎn)-教案
- 2024年消防宣傳月知識(shí)競(jìng)賽考試題庫(kù)500題(含答案)
- 2024年下半年事業(yè)單位公開(kāi)考試招聘工作人員報(bào)考信息表
- 國(guó)開(kāi)2024年秋《機(jī)電控制工程基礎(chǔ)》形考任務(wù)1答案
- 食品安全工作操作流程(5篇)
- 《中華民族大團(tuán)結(jié)》(初中)-第10課-偉大夢(mèng)想-共同追求-教案
- 《非計(jì)劃性拔管》課件
- 三室兩廳房屋裝修材料清單
評(píng)論
0/150
提交評(píng)論