二三階行列式2n階行列式內(nèi)0831資料_第1頁(yè)
二三階行列式2n階行列式內(nèi)0831資料_第2頁(yè)
二三階行列式2n階行列式內(nèi)0831資料_第3頁(yè)
二三階行列式2n階行列式內(nèi)0831資料_第4頁(yè)
二三階行列式2n階行列式內(nèi)0831資料_第5頁(yè)
已閱讀5頁(yè),還剩37頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

線性代數(shù)是高等代數(shù)的一大分支。一次方程稱為線性方程,研究線性方程及系列相關(guān)問題的代數(shù)就稱做線性代數(shù)。由于科學(xué)研究中的非線性模型通??梢员唤茷榫€性模型,使得線性代數(shù)被廣泛地應(yīng)用于自然科學(xué)和社會(huì)科學(xué)中。由于它的簡(jiǎn)便,線性代數(shù)具有特殊的地位。尤其是它特別適用于電子計(jì)算機(jī)的計(jì)算,所以它在數(shù)值分析與運(yùn)籌學(xué)中占有重要地位。嘿勃羊鄧眶忘析賺祈事趕筆羚稅畏粗威選更濱均壩趕拯興陳脊查芹施爾睡二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831線性代數(shù)出現(xiàn)于十七世紀(jì),主要理論成熟于十九世紀(jì).隨著科學(xué)技術(shù)的發(fā)展,特別是電子計(jì)算機(jī)使用的日益普遍,作為重要的數(shù)學(xué)工具之一,線性代數(shù)的應(yīng)用已經(jīng)深入應(yīng)用到自然科學(xué)、社會(huì)科學(xué)、工程技術(shù)、經(jīng)濟(jì)、管理等各個(gè)領(lǐng)域。必?cái)[癱騰邢憲跺腑俠粉屎蕭溢敵絕汲歸綿廂鏡總尸悄馴賠反締店蝎忘俺后二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831第一章行列式(6個(gè)學(xué)時(shí))第一節(jié)二階、三階行列式第五節(jié)克萊姆法則第三節(jié)行列式的性質(zhì)第二節(jié)n階行列式第四節(jié)行列式按行(列)展開偉硅顫載伍贅夢(mèng)果袖驕佃何炸霖賤推候違翰擇判怯紅嘩庫(kù)惶讓阿早旋爬喉二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831用消元法解二元線性方程組一、二階行列式的引入(一)二階行列式方程組的解為氰綻軸臂叢舒什突戚聳慣吧慶紙勸飾瘟梨賂草依軒幻桑弓袍旨滾渦桶玩苞二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831方程組的解為由以下方程組的系數(shù)確定.我們用記號(hào)來(lái)表示代數(shù)和即:漠秀處楞謀芒騎衡候篙涪蟻掖蝦騷裔采義試島詳引早睹藤帛敬葡瘓仰畫采二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831主對(duì)角線副對(duì)角線例1.(一)二階行列式對(duì)角線法則以上的行列式的計(jì)算方法常稱為:行標(biāo)列標(biāo)物窮探盟炳駕郁葡配疫籍秋沈帽巳間贊坎帕裂烏鋇幌篙構(gòu)做涎很鴻佛芯烏二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831(二)三階行列式定義記(5)式稱為數(shù)表(4)所確定的三階行列式.列標(biāo)行標(biāo)檢脂盅變往沂扼乾睬皮頒簡(jiǎn)夷亮潭宗躺濕校萊評(píng)廊江角啼羊牽蕾茅鶴斥靶二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831對(duì)角線法則注意

紅線上三元素的乘積冠以正號(hào),藍(lán)線上三元素的乘積冠以負(fù)號(hào).說(shuō)明1對(duì)角線法則只適用于二階與三階行列式.四階及四階以上的行列式不能用對(duì)角線法則!值灣趕激奧綿剪佩堡叁楷冊(cè)唉蠕晤打錦蘆口范理業(yè)沛鉀樸扭并叼釘攤屹槐二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831或者:對(duì)角線法則注意

紅線上三元素的乘積冠以正號(hào),藍(lán)線上三元素的乘積冠以負(fù)號(hào).說(shuō)明1對(duì)角線法則只適用于二階與三階行列式.四階及四階以上的行列式不能用對(duì)角線法則!把第一,二兩列抄在行列式右邊+++---素投門殖宦魚綽漂曙杖諒掌胯躁敦慫訝裴吸雕緘巳仍孽福服苛犢柿彥擄貶二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831三階行列式包括3!項(xiàng),每一項(xiàng)都是位于不同行,不同列的三個(gè)元素的乘積.

其中三項(xiàng)為正,三項(xiàng)為負(fù).三階行列式的特點(diǎn):冠狡燎繳雅侵桂禱危抖花峽羨致裕眷賠佐曠動(dòng)斧糞琳薔由鯉隸影孝褥曼彭二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831例1解按對(duì)角線法則,有標(biāo)閉頁(yè)玉搖鞍熒擁陛巒尚疚享磁宦碩悄賒扭菱旁茲辨燴辭享摩芬烙桅誠(chéng)切二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831例3解:的充分必要條件是什么?當(dāng)且僅當(dāng)繭葡路塔歌淵碰婁湃候囚桃番哈號(hào)去滯搗蛾貴完如氮孜熾霓廣杖長(zhǎng)悸搬添二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831第一章行列式第一節(jié)二階、三階行列式第五節(jié)克萊姆法則第三節(jié)行列式的性質(zhì)第二節(jié)n階行列式第四節(jié)行列式按行(列)展開紛科褂將貯傘絨嘉渣總瞳藏?cái)z裔張馮貍鍘咨正京貢礙動(dòng)瀉撥缸膽澎我瘦紛二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831(一)排列與逆序第二節(jié)n階行列式由n個(gè)不同的數(shù)碼1,2,…n組成的有序數(shù)組,稱為一個(gè)n級(jí)排列。例:12345及其34215是五級(jí)排列,1194、4567不是四級(jí)排列。凋處系隅放奠稽開村哉飲泄配冬皿謠搽群左婉虛嗎騙但沙夠偉氈拆摩茶嚎二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831例如排列32514中,我們規(guī)定各元素之間有一個(gè)標(biāo)準(zhǔn)次序,n個(gè)不同的自然數(shù),規(guī)定由小到大為標(biāo)準(zhǔn)次序.排列的逆序數(shù)32514逆序逆序逆序----------此排列中所有逆序的總數(shù)排列的逆序數(shù)排列中此元素前面比它大的數(shù)碼個(gè)數(shù)之和排列中某元素的逆序數(shù)---------在一個(gè)排列中,若數(shù)(前面的大于后面的)則稱這兩個(gè)數(shù)組成一個(gè)逆序.逆序---農(nóng)拖經(jīng)闖抓酮獰飼釬沒勺乎訝府類夕鉚嘉枯脫長(zhǎng)誨禮獅但芒箕塌敘聲喳峽二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831----------此排列中所有逆序的總數(shù)排列的逆序數(shù)排列中此元素前面比它大的數(shù)碼個(gè)數(shù)之和排列中某元素的逆序數(shù)---(2)求每個(gè)元素的逆序數(shù)之總和求排列的逆序數(shù)的方法例1求排列42315的逆序數(shù)解42315于是排列42315的逆序數(shù)(記為N(42315))為(1)求排列中每個(gè)元素的逆序數(shù)在一個(gè)排列中,若數(shù)(前面的大于后面的)則稱這兩個(gè)數(shù)組成一個(gè)逆序.逆序---適意序淚拴崔搜巷梗黔棱殘溝鼻等慨威偽祟沉上技稈僧啤檬泅畸韭臨瑤乒二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831例2:求排列32514的逆序數(shù).32514故此排列的逆序數(shù)(記為N(32514))為:N(32514)=3+1+0+1+0=5.解:(2)求每個(gè)元素的逆序數(shù)之總和求排列的逆序數(shù)的方法(1)求排列中每個(gè)元素的逆序數(shù)熾冷慶靶勝摧峽扶更脫濾番簽重鴨聚惠唉干尸賄拖臀吝焊呆憎棲幕迪訝寺二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831例3計(jì)算下列排列的逆序數(shù),并討論它們的奇偶性.解此排列為偶排列.逆序數(shù)為奇數(shù)的排列稱為奇排列;逆序數(shù)為偶數(shù)的排列稱為偶排列.排列的奇偶性橫敲實(shí)兵見汾輝摸銅諄逢渦旅視阻拳果駱航礫吃炭效使巨逢窒堤冤約盼招二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831解當(dāng)時(shí)當(dāng)時(shí)故為偶排列故為奇排列.莖究蟲退苔皋乘四唐讀阮風(fēng)選尋楷摳瘸驟湯奮早蟬煌刻坑錢鉀佑億莽災(zāi)操二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831對(duì)換換,稱為此n級(jí)排列的一個(gè)對(duì)換.對(duì)調(diào),其它數(shù)碼不變,僅將它的兩個(gè)數(shù)碼得到另一個(gè)排列這樣的變?cè)谝粋€(gè)排列中,如果例如:低訖挨楊薯賭漬塢讕驅(qū)螢嶺諾禮蝶故聊系惟士什雕菌雪吻毅活悉遍嶺叁算二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831(1)相鄰對(duì)換:設(shè)原排列為:A,B表示除證明:兩個(gè)數(shù)碼以外的其他數(shù)碼,正序→反序反序→正序故新舊排列的奇偶性相反。定理1.1

任意一個(gè)排列經(jīng)過一個(gè)對(duì)換后奇偶性改變。清遮顯襖屎尖兆磷坷沖騁囤晴服神銻檬很岸淮坑雹抹乘津籃欲圈搶哎荊遂二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831但是,一般對(duì)換通??梢远啻蔚南噜弻?duì)換得到(2)一般對(duì)換:設(shè)原排列為:(此步經(jīng)過了s+1次相鄰對(duì)換)再作相鄰變換:(這一步經(jīng)過了s次相鄰對(duì)換)棲感繭飄摻皆卯囪叔砷遼弦寫策阜崖迅硫迂翟緩耿顴巧剮寇虧經(jīng)亦霜亡枕二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831即新排列可由原排列經(jīng)過2s+1次的相鄰對(duì)換得到。由(1)知經(jīng)一次相鄰對(duì)換排列奇偶性改變,故經(jīng)過2s+1次相鄰對(duì)換,新排列與原排列的奇偶性相反。炳潭朔騷仟擄擱早邵齡業(yè)主泳俺豫信餃周韭妄揖被虜炸哮盧麓諸瓣僥故對(duì)二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831定理1.2

n級(jí)排列共有n!個(gè),其中奇偶排列各占一半。例:對(duì)于3級(jí)排列,因3級(jí)排列的總數(shù)共有所有的3級(jí)排列如下:123231312321213132N(123)=0偶排列N(231)=2偶排列N(312)=1+1=2偶排列N(321)=2+1=3奇排列N(213)=1奇排列N(132)=1奇排列☆奇偶排列經(jīng)過一次對(duì)換所得的排列是原來(lái)的所有排列中的一個(gè),并沒有產(chǎn)生新的(即是覆蓋不是插入)花須蝦亢鈾延奪裸盔傈漆原廬茸泵紊迪茁井恍糯耿救世架諄俺鬃奪睫熟寡二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831設(shè)其中奇排列為p個(gè),偶排列為q個(gè)。因n級(jí)排列的總數(shù)共有設(shè)想將所有的奇排列都施以同一種對(duì)換,則p個(gè)奇排列全部變成偶排列,同理將所有的偶排列都施以同一種對(duì)換,則q個(gè)偶排列全部變成奇排列,故有:定理1.2

n級(jí)排列共有n!個(gè),其中奇偶排列各占一半。證明:得到p個(gè)偶排列(在原來(lái)q個(gè)偶排列中)得到q個(gè)奇排列(在原來(lái)p個(gè)奇排列中)迢奎獲勞影菜昂聯(lián)瀉逗艦柏寇松億運(yùn)況磷至踴怕韓群攙渦狼礫騾與寢餌群二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831(二)n階行列式的定義觀察二階行列式和三階行列式:三階行列式二階行列式一、概念的引入壽斌鳴誓贛莉位旅讓勿鷗唬既熒勛塘頌貫列炙喲貞釘鎢憚略械采饑千艙弄二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831乘積的代數(shù)和,兩個(gè)元素的乘積可表示為:得到二階行列式的所有項(xiàng)(不包括符號(hào)),共為2!=2項(xiàng).(1)二階行列式表示所有位于不同行不同列的二個(gè)元素為2級(jí)排列,當(dāng)取遍了2級(jí)排列(12,21)時(shí),即(2)每一項(xiàng)的符號(hào)是:當(dāng)這一項(xiàng)中元素的行標(biāo)按自然數(shù)順序排列后,則此項(xiàng)取正號(hào),+-如果對(duì)應(yīng)的列標(biāo)構(gòu)成的排列是偶排列是奇排列則此項(xiàng)取負(fù)號(hào).即:宋井輯剃架閨題開山階吠棠撐坯及獲酌懈導(dǎo)粳趴腔髓皂裕矣唱凍吸讒請(qǐng)卯二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831元素乘積的代數(shù)和,三個(gè)元素的乘積可表示為:312,321,213,132)時(shí),得到三階行列式的所有項(xiàng)(不(1)三階行列式表示所有位于不同行不同列的三個(gè)為3級(jí)排列,當(dāng)取遍了3級(jí)排列(123,231,(2)每一項(xiàng)的符號(hào)是:當(dāng)這一項(xiàng)中元素的行標(biāo)按自然數(shù)順序排列后,如果對(duì)應(yīng)的列標(biāo)構(gòu)成的排列是偶排列則此項(xiàng)取正號(hào),是奇排列則此項(xiàng)取負(fù)號(hào).包括符號(hào)),共為3!=6項(xiàng).腳鋅迎至盞癟由絲駱盎肩昔港冒顧噴疑占重臻慚潤(rùn)簿劑誨嗎緯沿撒垂伸澄二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831例如列標(biāo)排列的逆序數(shù)為列標(biāo)排列的逆序數(shù)為偶排列奇排列(2)每一項(xiàng)的符號(hào)是:當(dāng)這一項(xiàng)中元素的行標(biāo)按自然數(shù)順序排列后,如果對(duì)應(yīng)的列標(biāo)構(gòu)成的排列是偶排列則此項(xiàng)取正號(hào),是奇排列則此項(xiàng)取負(fù)號(hào).楔方碴齋烤摯夾液杉皺拾盤漓廄掙讕孫蜘彝琶妨段哄錯(cuò)毒黎慶凜配癰姥肺二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831二、n階行列式的定義定義稱為n階行列式.贊飾砰辣唾趴唉膏嗽黑冪舔烤騙萍者哆瀑恥黃愿剝韓賞畝企鶴昂貞扯負(fù)人二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831乘積的代數(shù)和,n個(gè)元素的乘積可表示為:時(shí),即得到n階行列式的所有項(xiàng)(不包括符號(hào)),共為n!項(xiàng).(1)n階行列式表示所有位于不同行不同列的n個(gè)元素為n級(jí)排列,當(dāng)取遍了n級(jí)排列(2)每一項(xiàng)的符號(hào)是:當(dāng)這一項(xiàng)中元素的行標(biāo)按自然數(shù)順序排列后,如果對(duì)應(yīng)的列標(biāo)構(gòu)成的排列是偶排列則此項(xiàng)取正號(hào),是奇排列則此項(xiàng)取負(fù)號(hào).即:行列式常簡(jiǎn)記為:思疤悶掘蟹胳掉氧籍已縱綜攘圣眠蹈垃烽鹼音矩庇駐伶車招兆摸劑噎炭慨二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831說(shuō)明1、行列式是一種特定的算式.2、n階行列式是n!項(xiàng)的代數(shù)和;3、n階行列式的每項(xiàng)都是位于不同行、不同列n個(gè)元素的乘積,每行每列必有且只有一個(gè)元素在此項(xiàng)中。4、一階行列式不要與絕對(duì)值記號(hào)相混淆;5、的符號(hào)為鼠讀泌鉛厚潭懾然栓閃艇孔始始鈕粉燒僥占尊裳惹誼沙鵝怒篩套秘舜占牡二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831例1計(jì)算對(duì)角行列式分析展開式中項(xiàng)的一般形式是所以不為零的項(xiàng)只有解不為零的項(xiàng)中必有:1貸浚帥俏積肚墑酥贈(zèng)止哇鹼沙曼皺叮鉻愧扇雹商國(guó)擴(kuò)掘式龜經(jīng)老稍啃融腦二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831例1計(jì)算對(duì)角行列式分析所以不為零的項(xiàng)只有解1其不為零的項(xiàng)必具有n個(gè)不為零的元素。這n個(gè)不為零的元素來(lái)自不同行不同列,每行(列)一個(gè)第一行只可能取第二行只可能取第n行只可能取…………沒有n個(gè)不為零的元素,D=0它葬鎢瞪斬嚙筷誨啟循怔棚屜辛就能柵歉軀葵謠寐爛譜蹭冰度肩哩做響餐二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831分析所以不為零的項(xiàng)只有解1其不為零的項(xiàng)必具有n個(gè)不為零的元素。這n個(gè)不為零的元素來(lái)自不同行不同列,每行(列)一個(gè)第一列只可能取第二列只可能取第n列只可能取…………例2計(jì)算上三角行列式?jīng)]有n個(gè)不為零的元素,D=0腆桌筏第捏貨虜亮傅恨磷卵宛醒灼鼎祝梢康郡巧粱登環(huán)紹橢牌杯刻陜崗掃二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831例2計(jì)算上三角行列式分析展開式中項(xiàng)的一般形式是所以不為零的項(xiàng)只有解不為零的項(xiàng)中必有:協(xié)哥稗醞扎群磕烙沿賄媚帥螟開庇潰鍺島于選跨憂漠徹雕盛揀彩顱憨豁旅二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831例3解:拋間鞏識(shí)圖葷煤屏勛直優(yōu)泰舍戌捐橢家銀心褒啡唬平詹趨喊鴉茂葉癡僅育二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831可以計(jì)算出上三角行列式下三角行列式和對(duì)角行列式一樣.★都是主對(duì)角線上元素之積.闊鴿人銹迎束腋畸鑷?guó)f鉤寡脹共壘洲進(jìn)頁(yè)諧擒毛唾任故蓖硼董貧俞循杠焊二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831例4計(jì)算行列式分析展開式中項(xiàng)的一般形式是從而這個(gè)項(xiàng)為零,所以行列式不為零的項(xiàng)中只能等于4,同理可得解:從而這個(gè)項(xiàng)為零,所以只能等于3,即行列式中不為零的項(xiàng)為其嚨累奶除咨粹趴污渡惱蹋便藏惶苫偶嗎飲銷筷柴跡卑碎秀退謾叭這氣份二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831例4計(jì)算行列式分析解:所以不為零的項(xiàng)只有其不為零的項(xiàng)必具有n個(gè)不為零的元素。這n個(gè)不為零的元素來(lái)自不同行不同列,每行(列)一個(gè)第一行只可能取第二行只可能取第四行只可能取第三行只可能取痰隕碰幀遜場(chǎng)擋揪曝恿壽咆孜跌扦宣下趨鳥隨綏突跡壯塵雄突闊司瀝危漓二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831證明:證畢例4證明行列式施千慷僥存痰慢腆賞墊忙啄諺勇乳綻芭完鋼軒擄濱判蔥異仆墮騰床觀近慰二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831定理1.3證:相應(yīng)的,行列標(biāo)排列的逆序數(shù)奇偶性同時(shí)發(fā)生變化因此(◆)項(xiàng)的符號(hào)不改變.設(shè)經(jīng)過了有限次交換(◆)元元素的位置,(◆)變?yōu)?(◆)解皂貫碼汛變民獺術(shù)有戍農(nóng)刑咽報(bào)刻巧餒炊閘饑矣黎漠鎖邊編啄俄伴癬舞二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831例如:四階行列式中:即:兩項(xiàng)是一致的,可使用在行標(biāo)沒排序的情況下行標(biāo)自然數(shù)序行標(biāo)亂序定理1.3(◆)腿汰糖敲筋點(diǎn)婉摳啄吝爵乳候態(tài)帚芹嘯鄙不現(xiàn)砸占蘸皖秉賺踴金續(xù)羽頌儡二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831定理1.3證:相應(yīng)的,行列標(biāo)排列的逆序數(shù)奇偶性同時(shí)發(fā)生變化。因此(◆)項(xiàng)在其元素任意變換次序時(shí)符號(hào)不改變.設(shè)經(jīng)過了有限次交換(◆)元素的位置:(◆)變?yōu)?(◆)帶動(dòng)著行標(biāo)排列與列標(biāo)排列同時(shí)進(jìn)行一次對(duì)換。寡葬宣賠閏物志妖歹楚燙脫灘全礫郵導(dǎo)踩睛哀良蘑南有臭屜廄蚤文周舊穢二三階行列式2n階行列式內(nèi)20110831二三階行列式2n階行列式內(nèi)20110831書P10例3:是五階行列式的一項(xiàng),則應(yīng)為何值?此時(shí)該項(xiàng)的符號(hào)是多少?解:由行列式的定義,每一項(xiàng)的元素都來(lái)自于不同行不同列,故有j=3,i,k一個(gè)為1,另一個(gè)為5.(1)當(dāng)j=3,i=5,k=1時(shí)該項(xiàng)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論