![2024 全球6G技術(shù)大會 -10.0C 6G Wireless Intelligent Cloud Network_第1頁](http://file4.renrendoc.com/view3/M01/3F/1C/wKhkFmYnuP-ADnr-AAFZ1Xu8Urk317.jpg)
![2024 全球6G技術(shù)大會 -10.0C 6G Wireless Intelligent Cloud Network_第2頁](http://file4.renrendoc.com/view3/M01/3F/1C/wKhkFmYnuP-ADnr-AAFZ1Xu8Urk3172.jpg)
![2024 全球6G技術(shù)大會 -10.0C 6G Wireless Intelligent Cloud Network_第3頁](http://file4.renrendoc.com/view3/M01/3F/1C/wKhkFmYnuP-ADnr-AAFZ1Xu8Urk3173.jpg)
![2024 全球6G技術(shù)大會 -10.0C 6G Wireless Intelligent Cloud Network_第4頁](http://file4.renrendoc.com/view3/M01/3F/1C/wKhkFmYnuP-ADnr-AAFZ1Xu8Urk3174.jpg)
![2024 全球6G技術(shù)大會 -10.0C 6G Wireless Intelligent Cloud Network_第5頁](http://file4.renrendoc.com/view3/M01/3F/1C/wKhkFmYnuP-ADnr-AAFZ1Xu8Urk3175.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1/18
TableofContents
1.Abstract 2
2.O-RANArchitecture 2
3.6GVisionanddesigntarget 3
4.Keytechnicalpillarsandconsiderations 4
4.1Networkarchitectureconsiderations 4
4.2ServicebasedRAN 6
4.3AI 8
4.3.1Cross-domainAIcollaboration 10
4.3.2LargeModel 11
4.4Spectrumsharing 12
4.5SustainabilityandEnergysaving 14
5.Forward-Looking 16
Reference 16
Abbreviation 17
Authors 18
2/18
1.Abstract
O-RANALLIANCEhasbeenfoundedin2018byAT&T,ChinaMobile,DeutscheTelekom,NTTDOCOMOandOrange.Sincethen,O-RANALLIANCEhasbecomeaworld-widecommunityofmobilenetworkoperators,vendors,andresearch&academicinstitutionsoperatingintheRadioAccessNetwork(RAN)industry.Themissionistore-shapetheRANindustrytowardsmoreintelligent,open,virtualizedandfullyinteroperablemobilenetworks.O-RANleveragesmostofthephysicalfeaturesdefinedin3GPP,whichmaintainsaunifiedandhealthyecosystem.O-RANspecificationssplitsthenetworkentitiesanddefinestheinterfacestofacilitatethemulti-vendorjointlydevelopandinteroperatetesttheproducts.
ITUdefinedIMT-2030Frameworkandrelatedtimeline,andtheindustriesinitializedthe6Gstudyaccording.O-RANalsokickedoffthe6GstudyinnGRG,whichistoformulatethe6Grelatedviewsbeforestandard.Beyondtheadvancedfeatures,O-RAN’sflexiblearchitecturecouldprovidesomeuniqueadvantagesforfuture6Gnetworks,whichincludesprogramablearchitecturefornetworkintelligence,service-basedRANdesign,sufficientnetworkpoweroptimization,flexiblespectrumsharingandetc.
Thiswhitepaperbrieflyintroducessomekey6GtechnicalpillarsbasedonO-RANnGRGdiscussion.Tofacilitatethereadertounderstandthetechnicalissuesandconsiderations,theO-RANarchitectureisintroducedinsection2.WealsoprovideforwardlookingforO-RANin6Geraattheendofthewhitepaper.
2.O-RANArchitecture
BelowistheO-RANarchitectureoverviewdefinedbyO-RANalliance[1].O-RANleveragesthe3GPPdefinedinterfaceandalsodefinessomenewinterfacesasitsplitstheRANfunctionsintoO-CU,O-DU,andO-RU.
3/18
Figure1O-RANArchitectureoverview[O-RAN]
Withinthearchitecture,RANIntelligentController(RIC)isthelogicalfunctionstoenablethecontrolsinanearrealtimeornon-realtimemanner.Thenetworkcontrolfunctionsaresplittedintothetwoentitiesbasedonrequiredtimescale.E2istheinterfaceconnectingtheNRRICandO-CU,andmostofthenetworkintelligentfunctionsareconnectedviaE2.O-DUandO-RUaretworemarkableentitiestorepresentthenetworkopenness.ThereareseveralsplitoptionsbasedonthesupportedfunctionsonO-RU.OperatorscouldprogramtheRICfunctionswithdifferentAPPs,andmultipleAPPscouldflexiblyenablethedifferentnetworkfunctions.
3.6GVisionanddesigntarget
ITU-RdefinestheIMT-2030Framework[2],whichincludestheusagescenariosandcapabilitiesof6G.Thisframeworkrecommendationisoneofthemostimportantguidancefor6Gandwouldbereferredasdesignguidancefor3GPPandotherSDOtospecifythe6Gstandard.
UsagescenariosofIMT-2030areenvisagedtoexpandonthoseofIMT-2020(i.e.eMBB,URLLC,andmMTCintroducedinRecommendation
ITU-RM.2083
)intobroaderuserequiringevolvedandnewcapabilities.InadditiontoexpandedIMT-2020usagescenarios,IMT-2030isenvisagedtoenablenewusagescenariosarisingfromcapabilities,suchasartificialintelligenceandsensing,whichpreviousgenerationsofIMTwerenotdesignedtosupport.
TheusagescenariosofIMT-2030includeImmersiveCommunication,HyperReliableandLow-LatencyCommunication,MassiveCommunication,UbiquitousConnectivity,ArtificialIntelligenceandCommunication,andIntegratedSensingandCommunication.
4/18
Figure2IMT-2030UsageScenarios[2]
O-RAN’snetworkarchitectureprovidesmostflexibilitybysplittingRANfunctionsanddefiningstandardinterface.Asthe6Gusagescenariosaredoubledcomparedto5G,theO-RAN’sflexibilitywouldbeagoodfoundationforfurtherinnovation.Insection3ofthepaper,wediscussedseveralhighlightedtechnicalpillarsfor6Gdesignandanalyzethechallengesandpotentialsolutions.
4.Keytechnicalpillarsandconsiderations
4.1Networkarchitectureconsiderations
6Gnetworkbridgesthephysicalanddigitalworlds.Anincreasingnumberoftrafficwilloccurontheedgeofthe6Gnetwork.Thepotentialfeaturesoffuture6Gnetworkareintelligence,programmabilityandresourcepooling.
Intelligenceisthekeyenablertechnologyfor6Garchitecture,andnativeAIhasarousedmoreattentionfromacademiaandindustry.InordertoachievethenativeAI,therelatedinterface(e.g.,E2)andprocedure(e.g.,AI/MLflow)shouldbeconsideredin6Garchitecture.Thesub-section3.3describesthenativeAIindetail.
Inthecontextof6G,theintegrationofnativeAIneedsanefficientandconvenientapproachtoincorporateAIelementsseamlessly.Inaddition,thedifference6Gservicerequiresdifferentnetworkresources.Therefore,programmabilityemergesasapromisingsolutiontodrivethedevelopmentof6Garchitecture.
5/18
Programmabilityencompassesthreekeycomponents:Parameter,Data,andAlgorithm.Programmableparameterfacilitatestheseamlessadaptationofparametersof6Gnetworkthroughaprogrammableframeworkandgeneralinterface.ProgrammabledatainvolvestheconstructionofdatasetsforAIalgorithmtrainingandtheexplorationofdatarelationshipswithinthenetworkfunctions.Additionally,datacanbesecurelyprovidedtothirdpartiesthroughrelevantsecuredmethods.Theprogrammablealgorithmsdefinetheinputandoutputdataformatwithdifferentscenarios.ThenetworkfunctionsandthirdpartiescanembedorreplacetheAIalgorithmsviaaprogrammableframeworkunderthesubjectsoftheaforementionedinputandoutputandasecuritycheck.Tofacilitatethisprocess,aprogrammableframeworkisrequiredtodeployandmanagethesealgorithmseffectively.Theframeworkshouldencompassacomprehensivesetofprogrammableinterfacesandfunctionmodules,enablingseamlessintegrationandoperation.Additionally,theprogrammablealgorithmensuresthatthe6Gnetworkdynamicallyadaptstovariousscenarios'requirements.Forinstance,ifconsumersseekhighthroughputfromtheRAN,theAIalgorithmincorporatestheRANslice.Similarly,forconsumersprioritizingQualityofService(QoS),theAIalgorithmintegratestheQoSoptimization.
ToenabletheimplementationofprogrammableRAN,itisessentialtoprogressivelyopenthetraditionallyclosedprotocolstackwithintheRAN.Thisinvolvesenhancingthefunctionalityattheprotocolstacklevel,andstandardizingandgeneralizingthenewlyopenedinterfaces.InthecontextoftheongoingevolutionofnativeAI,programmableRANcatalyzesadvancementtowardamoreopenandintelligentRANvision.Byembracingprogrammability,theRANcaneffectivelyadapttodynamicnetworkrequirements,fosterinnovation,andleveragethefullpotentialofnativeAI.
Resourcepoolingplaysanimportantrolein6Garchitecture.Theresourceisstillheterogeneous,itconsistsofcommonanddedicatedresources.Generalresourcesarecommon,standardizedhardware(i.e.,industrialserversbasedonX86orARMCPUs),anddiversifiedhardwarechipswithscalability,includingaccelerationandclockresourcechips,andgraphicsprocessingunit(GPU)forAImodeltraining.ForRAN,high-speedprocessingandalargenumberofdedicatedresourcesarerequired,suchasFieldProgrammableGateArray(FPGA)forcodingandencoding.TheclockresourcesareappliedtofulfillsynchronizationaccuracyamongnetworkelementsandUEs.Dedicatedresources(e.g.,ASICchips)providespecializedservicesforasmallnumberoffacilitieswithlargecapacityandultra-high-performancerequirements.
6/18
Figure3ProgrammableRAN
4.2ServicebasedRAN
Historically,RANarchitecturewasmainlydesignedtoguaranteetheconnectionservicefortraditionalToCbusiness,usingarelativelyclosedprotocolbutwiththeperformanceadvantagesofspecialization.Asmorescenariosandservicesintroducedin5Gand6G,andITtechnologiesisintegratedinmobilenetwork,RANarchitectureneedtoevolvetoprovidemoreflexible,adaptablenetwork.O-RANisdefiningamoreopenarchitecture,buildingaunifiedcloudplatformforRAN,standardizingmoreopeninterfaces,andintroducinganintelligentfunction.TheimplementationofcurrentcloudRANonlychangestherunningplatformforsoftwareinsteadofchangingsoftwarearchitectureoftheRAN.ThisRANarchitectureisnotcloud-friendlyandcannotmakefulluseoftheadvantagesofcloud-native.
Cloud-RANisthefirststep,RANsystemcanbefurtherevolved.SBAin5GCoreNetworkcanbeusedasreference.ThegoalofService-basedRANisachievingafullycloud-nativearchitecturebyrebuildingRANfunctionsintocombinableandreusablenetworkservicesandusingunifiedinterfacewithRANinternalservicesandCN.
Theadvantagesoftheservice-basedRANinclude:
1)Flexibleandelasticdeploymentofnetworkfunctions,rapidupgradingandexpansionofnetworkcapabilities,enablingmorebusinessscenarios;
2)Bringnewend-to-endnetworkinteractionwayswithoutreducingtheimpactof
7/18
cross-domainnewfunctionsintroductiononexistingservices;
3)Moretimelyandmulti-dimensionalopeningofwirelessnetworkcapabilities;
4)IntegratedmanagementandorchestrationwithCNservices,reducingthecomplexityofnetworkoperationandmaintenance,improvingthenetworkofadaptabilitytonewbusinesses.
Figure4Theconceptofservice-basedRAN
Thedesignoftheservice-basedRANarchitectureneedstoconsiderthefollowingaspects:
ServiceGranularity
ThegranularityforRANserviceswhichisrebuiltformtheoriginallyRANfunctionsiscrucial.Thesmallerthegranularity,themoreflexibleitis,butitmaybringperformanceandefficiencyissues.Theimplementationofthe5Gcorenetworksservice-basedarchitectureincludestwolevels:NFandNFServices.NFscommunicatewitheachother,andinternalNFservicescansharedatabaseswhichreducescomplexityandisalsodifferentfromMicroservicesarchitecture.Consideringtheinternalfunctionalcorrelationsandcomplexity,RANcaninitiallyberebuiltinasimilarwaytotheCoreNetwork.
Service-basedRANfunctions
5GRANcanbefunctionallydividedintocontrolplaneanduserplane,andthereisalsotheconceptofseparationofcontrolplaneanduserplane,butinthedeploymentlayer,itstilladoptsasinglemode.Thecontrolplanemainlyincludesfunctionssuchasconnectionmanagement,sessionmanagement,mobility,andmeasurement,andtheuserplaneincludestheprocessingofdatapackets.Therearedifferentconsiderationsforondifferentfunctionalplanes.
Forthecontrolplane,theservitizationcanrebuildtheexistingcontrolplanefunctionsintofinergrainedservicesaccordingtothedegreeofcoupling,anddifferentservicescanbecombinedandflexiblydeployedindifferentscenariosandregionsondemand.Forexample,inthescenariooftheInternetofvehicles,themobilitymanagementserviceissuitableforcentralizeddeploymenttooptimizethemobilityexperience.Atthesametime,theservice-basedfunctionsofthecontrolplanecanrealizedirectaccesstotheCoreNetworkcontrolplane,reduceunnecessarysignalingforwarding,andtheinteractionwithothercorenetworkservicescanbechangedfromserialinteractiontoparallelinteraction,optimizingthesignalingprocessofthecontrolplane.The
8/18
optimizationofsignalingprocesseshelpsimprovenetworkperformance,suchasdelayandefficiency.Besides,forextremerequirementsofspecificservices,italsohelpsRANandCNintegratesattheedge,simplifyingdeploymentcomplexityandimprovingperformance.Finally,forthemorecomplexfunctionalconfigurationandparameterconfigurationofthefuturenetwork,theservice-basedcontrolplanecanbeexecutedandupdatedatasmallergranularitywithoutaffectingtheoperationofotherservices.
Fortheuserplane,thetraditionalmobilecommunicationprotocolsallfollowtheOSIhierarchicalprotocoldesignconcept.Eachlayerreceivesspecificservicesprovidedbythelowerlayerandisresponsiblefortheupperlayer.Theupperandlowerlayersinteractwitheachotheraccordingtotheinterfaceagreement,andthesamelayerinteractswitheachotheraccordingtotheprotocolagreement.Theproblemofthislayereddesignconceptisthattheprotocolandservicemodelarefixed,andflexiblecross-layersignalinginteractionandcross-layerfunctioncombinationcannotberealized.Thediversifiedcharacteristicsoffutureapplicationswillbringmoredifferencesindatapacketprocessing,suchassmalldatapacketsforindustrialcontrol,whichrequirehigherreliabilityandneedtoutilizethePDCPreplicationfunctioninuserplane;ImmersiveinteractiveapplicationshavedifferentprocessingrequirementsforI-frame,P-frame.TheuserplaneneedsfunctioncombinationandarrangementforthenewQoSguarantee.Inadditiontothecurrenttypesofexistingapplications,sensing,AIandothernewapplicationshavealsobroughtnewdatapacketmodels,requiringtheuserplanetobeabletomatchtheprocessingofdifferentdatapackets,aswellasforwarding.Theservice-baseduserplanehasadvantagesinflexiblecombination,deployment,andrapidupdate.Forscenarioswithdifferentuserdatapacketprocessingrequirements,theservice-baseduserplanecanbepreferred.
Besides,thenewservicessuchasAI,computing,sensingwillbeprovidedbythefuturewirelesssystem,ontheonehand,thiscanenabletheenhancementoftheexistingfunctionalplane,suchasintroducingcontrolfunctionsforsensingandcomputingpowerandintroducingnewuserpacketprocessingmodeinuserplane.Ontheotherhand,RANmayalsointroducenewfunctionalplanes,suchasdataplane,bringingnewfunctionalinteractiveways,thatwillraisemoredemandsonnetworkflexibilityandrapidupdate.Service-basedarchitecturehascertainadvantagesintheseaspects.
Service-basedinterface
Atpresent,theRANandtheCoreNetworkinteractthroughthepoint-to-pointN2interface.Forservice-basedRAN,aservice-basedN2interfacecanbeconsidered,andtheRANisstillanindependentwhole,RANservicescaninteractwitheachotherthroughaninternalefficientinterface.Thisapproachisrelativelyeasytoimplementandcanbeadoptedduringtheinitialphaseofserviceorientation.TheotherwayistouseaconsistentinterfacebetweenRANinternalservicesandthecorenetwork,RANservicesandcorenetworkservicesareinapeerpositionandcanachievedirectinteraction,thisapproachhasmoreadvantages,butatthesametimewillbringmoreissuesrelatedtonetworksecurity,ecologicalchange.
4.3AI
ArtificialIntelligence(AI)hasbeenproposedasoneofthemostpowerfultechnologiesthat
9/18
improvessystemperformanceandenablesnewfeaturesinthewirelesscommunicationnetwork,byanalyzingthedatacollectedandautonomouslyprocessedthatcanyieldfurtherinsights.
3GPPintroducedanewlogicalfunctionentity,namedNWDAF,tothe5GCtoprovidemultipletypesofnetworkdataanalyticservices.Thenetworkdataanalyticservicesinclude:
ObservedServiceExperiencerelatednetworkdataanalytics,toprovideaverageofobservedServiceMoSand/orvarianceofobservedServiceMoSindicatingserviceMOSdistributionforservicessuchasaudio-visualstreamingaswellasservicesthatare
notaudio-visualstreamingsuchasV2XandWebBrowsingservices;
NFLoadAnalytics,toprovidetheaverageloadoftheNFinstance;
NetworkPerformanceAnalytics,toprovidethebasestationstatusinformation,resource
usage,communicationperformanceandmobilityperformanceinanareaofinterest;
UErelatedanalytics,toprovidetheUEmobilityanalytics,UEcommunicationanalytics,expectedUEbehavioralparametersrelatednetworkdataanalyticsandabnormalbehaviorrelatednetworkdataanalytics;
UserDataCongestionAnalytics,toprovidecongestionexperiencedwhiletransferringuserdataoverthecontrolplaneoruserplaneorboth;
QoSSustainabilityAnalytics,toprovidetheQoSchangestatisticsorlikelihoodofaQoSchangeforananalyticstargetperiodinacertainarea.
InRAN,3GPPalsoconductedseveralstudiesontheAI-enablednetwork.InRelease17,3GPPconductedastudyonAI-enabledRANintelligence,whichdefinedareferencefunctionalframeworkandidentifiedasetofhigh-levelprinciplestoguidethestandardswork.ThestudyonAI-enabledRANintelligencefocusedonthreeusecases:
NetworkEnergySaving,tooptimizetheenergysavingdecisions(e.g.,cellactivation/deactivation)bypredictingtheenergyefficiencyandloadstateofthenextperiod;
LoadBalancing,toprovidehigherqualityuserexperienceandtoimprovesystemcapacitybybasedoncollectionofvariousmeasurementsandfeedbacksfromUEsandnetworknodes;
MobilityOptimization,toreducetheprobabilityofunintendedeventsassociatedwithmobility,topredictUElocation,mobilityandperformance,andtosteertraffictoachieveefficientresourcehandling.
InRelease18,3GPPconductedastudyonAIforNRairinterface,toexplorethe3GPPframeworkforAIforair-interfacecorrespondingtoeachtargetusecaseregardingaspectssuchasperformance,complexity,andpotentialspecificationimpact.ThestudyonAIforNRairinterfacealsoadoptedausecasecentricapproach,focusingonthreeselectiveusecases,namelyCSIfeedbackenhancement,beammanagementandpositioningaccuracyenhancement.InRelease19,3GPPconductedastudyonAIformobility,toimprovehandoverand/orRRMperformancebypredictingcelllevelmeasurement,handoverfailure/radiolinkfailure,andmeasurementevents.
10/18
IntheO-RANarchitecture,theintroductionoftheRIChasbeenanimportantdevelopment,makingitpossibletointroduceAIbasedsolutionstoawidelyusecases.EnablingAIdrivennetworkingrequiresaparadigmshiftinthearchitecturalblueprint.Inthe6G,therearethreeimportantfeaturesofAIneedtobeconsidered,namely,nativeAI,crossdomainAI,andnetworklargemodel.
NativeAIreferstoembeddingAIintofunctionalitiessupportedbyvariousnodes/endpointsandinterfaceswithinanetworkarchitecture[8].ConsideringthefourkeycomponentsofAI,i.e.,computingpower,data,AIalgorithmsandfunctionalities,anativeAInetworkshouldbewithahybridcentralized/distributedAIarchitecture.ThecentralizedAIentitiesrunfororchestration,managing,deployingandcontrollingallthedistributedAIentities,e.g.,ontheSMOplatformthatinteractswithotherdomain-specificAIentities.ThedistributedAIentitiesrunforservingfunctionsofthelocalnetworkandreceivingcommandsfromthecentralizedAIentities,e.g.,ontheCN,TN,BSandUErespectively.
The6GwirelessnetworkwillnativelyintegratecommunicationcapabilitieswithAI.Ontheonehand,end-to-endAImayleveragemassiveamountsofdataproducedbyairinterfacesandnetworkstooptimize6Gnetworksandofferconsumerscustomizednetworkservices.Ontheotherhand,asthecomputingpowerofinfrastructureandterminaldevicesenhances,futurenetworkswillbeabletoofferadistributeddeploymentenvironmentforAI,deliveringmoreflexibleandreal-timeAIservicesatthenetworkedgeforusers.Firstly,itisessentialthatsupportforAIbetakenintoconsiderationfromthebeginningwhendesigningnetworkarchitecture.Thisconsiderationmustensuretheseamlessintegrationoftraditionalcommunicationinteractions,whilethemetricsfortrainingandinferenceofAIareconvergedintothecontrolanddataflow.CollaborationwithinAIisalsoacriticalfactortotakeintoaccount.ThisincludescooperationbetweencentralizedanddistributedAIdeployment,cooperationbetweenlargenetworkmodelsandotherspecializedmodels,andthecross-domainAIcollaborationamongRAN,CN,andmanagementsystems.Hence,itisimperativetodesignefficientAIcollaborationmechanismsfromtheperspectivesofAIorchestrationandmanagement,datainteraction,distributedlearningalgorithms,andcomputingpowerscheduling.Lastbutnotleast,theproblemofAIsecurityhascontinuouslypresentedamajorobstacletotheuseofAItechnologies,requiringprotectionsintrustworthyAI,datasecurity,andprivacytoguaranteethedependabilityandsecurityof6GAIapplications.
4.3.1Cross-domainAIcollaboration
CrossdomainAIreferstocollaborationandintegrationofAI-enabledfunctionalitiesacrossdifferentdomains,wherethedomainscanmaptonetworksdomains(e.g.,RAN,CN,TN,networkapplications,networkdigitaltwins)orotherdomains[8].InordertoenablecoordinatedAIcapabilitiesacrossdifferentnetworkdomains,thecentralizedAIentities(e.g.,ontheSMOplatform)shouldhandletheend-to-endAImanagementandorchestrationcapability,suchascross-domaindataarrangementandmapping,AItaskidentificationanddecomposition,mappingAItaskswithcomputingresources.
Figure3providesapotentialarchitecturefornativeandcross-domainAI,wherethecentralizedAIentityislocatedinthemanagementdomain.ForE2Eintelligentscenario,across-domainAImanagementfunctionshouldbeaddedintheSMOasacentralizedAIentityto
11/18
coordinatetheAIcapabilitiesfromotherdomains.ThismoduleisrequiredtohandleAIserviceorchestration,networkcomputingresourcemanagement,modelstorageandmanagement,cross-domainAIlifecyclemanagement,andotherrelatedfunctions.
Figure5Nativeandcross-domainAInetworkarchitecture.
Forthenativeandcross-domainAInetworkarchitecture,thecollaborationcontrolbetweendifferentnetworkdomainsisanewchallenge[9].Firstly,thecollaborationcontrolfunctionlocatedinthecentralizedAIentitywilldecomposeintentsintoservicerequirementsonevolvednetworkdomains,wheretheservicerequirementswillaffectconnectionrequirements,AIalgorithmrequirements,datarequirementsandcomputingrequirements.Basedontheservicerequirements,thedistributedAIentitylocatedinthenetworkdomainwilldecomposetheservicerequirementsintothenetworkfunctionrequirements,connectionrequirementsandresourcerequirements.Secondly,toprovideamorereal-timemanagementcapabilities,theserviceswithhighreal-timerequirementsandlowcomplexitywillbeprocessedbythedistributedAIentities,whiletheserviceswithlowreal-timerequirements,largeareasandhighcomplexitywillbeprocessedbythecentralizedAIentity.Therefore,thecollaborativecontrolmethodsshouldbeconsidered,e.g.,federatedlearning,splitlearningandtransferlearning.
4.3.2LargeModel
AsabreakthroughdevelopmentofAItechniques,NetworkLargeModel(NetLM)haveattractedattentionfromboththescientificcommunityandindustryalike.ComparedwithtraditionalAImodelsthatoptimizenetworksunderpredefinedoperations,theNetLMleveragesgenerativeAIalgorithms,e.g.,generativeadversarialnetworkandtransformer,toautomaticallyandcreativelygeneratecustomizednetworksolutions.Forexample,forthejointcommunicationandsensing,theNetLMcouldhelpingeneratingrelevantrays(e.g.,generatingtherightdistributionofAzimuthandElevationanglesoftheradiofrequencybeamtransmittedoutofthenode)tocaptureandsensethesurrounding.AnotherexampleistheNetLMfordigitaltwin,where
12/18
theNetLMisabletolearnthetailbehaviorofthetraindatasetdistributionwithonlyafewsamples,andgeneratethenewbehaviorbasedonwhatwaslearnedthatisconsistentwithreality.
SinceNetLMusuallyconsistsofbillionsofparameters,itisdifficulttodeploytheNetLMontheedgedirectlyduetothelimitedcomputing,communicationandstorageresources.Inaddition,thedeploymentoftheNetLMinthecorenetworkwillalsocausetremendoustransmissionlatencyduetothehugeanddistributeddatatobecollectedandtrainedinthecloud.Therefore,thedeploymentoftheNetLMwillemphasizethecollaborationbetweenNetLMwithvariousscales,includingthecollaborativetrainingandinference.Astandardizedcollaborationmechanismneedstobedefined,suchasnetworkarchitecturewithnewnetworkelement,large-scaledatadistributedstorageandreal-timeprovisionmechanism,andmodel-basedcollaborativeinterface.
4.4Spectrumsharing
From4Gera,mobileoperatorsjointlydeploytheRANnetworkstoextendthecoverage.ThiscouldlargelyreducetheCAPEXandbecomesthemajortrendswhen5Gcomes.InChinaandotherregions/countries,operatorssharethefrequenciesandcooperateontheRANnetworkconstruction.CMCC&CBNjointlydeploythe5GNRnetworkonbandn28,CT&CUjointlydeploythe5GNRnetworkonbandn79andotherfrequencies.
3GPPspecifiedtheRANsharingmechanism,whichisknownasMOCN,standingforMulti-OperatorCoreNetwork.InaMOCNset-up,oneradioaccessnetworkprovidesaccesstothenetworkofmultipleoperators.Eachoperatorrunsherowncorenetwork,buttheradioaccessnetwork,includingcarriersignals,isthesameforallpartnersinacertainregion.OnedrawbackisonlytheoperatorwhoownstheRANnetworkcouldoptimizethescheduler&configurationbasedonservicecharacters,andotheroperatorswouldnothavesuchflexibility.Iftheotheroperators’newusecases(e.g.XR)aredifferentthantheoriginaloptimization,theyhave
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《華為績效模式》課件
- 《經(jīng)濟法學》課件
- 2025年重慶貨運從業(yè)資格考試題目及答案大全
- 影響機械制造中盤類零件高效加工的因素
- 影視創(chuàng)新與秋分文化模板
- 智能農(nóng)業(yè)營銷推廣模板
- 2025年合成云母微波吸收材料項目合作計劃書
- 小學開學第一課活動方案1
- 寧波大學生創(chuàng)業(yè)補助的項目
- 執(zhí)行案件申請書
- 2022年濰坊工程職業(yè)學院單招英語題庫及答案解析
- 中建醫(yī)院幕墻工程專項方案
- 基于OBE理念的世界現(xiàn)代史教學與學生歷史思維培養(yǎng)探究
- TSG11-2020鍋爐安全技術(shù)規(guī)程(現(xiàn)行)
- 一年級20以內(nèi)加減及混合口算練習題
- 中南大學《藥理學》2023-2024學年第一學期期末試卷
- 機電隊技術(shù)員安全生產(chǎn)責任制(3篇)
- 血透機常見報警原因及處理課件
- 2024快手非遺生態(tài)報告
- 房地產(chǎn)行業(yè)房地產(chǎn)銷售業(yè)績考核方案
- Unit2 Travelling Around Project北京之游學生作業(yè)教學設(shè)計 -2023-2024學年高中英語人教版必修第一冊
評論
0/150
提交評論