![甘肅省張掖市山丹縣一中2024屆高考數(shù)學(xué)押題試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view14/M0A/1B/0B/wKhkGWYtpXaAKSSXAAJv7a_vJCg888.jpg)
![甘肅省張掖市山丹縣一中2024屆高考數(shù)學(xué)押題試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view14/M0A/1B/0B/wKhkGWYtpXaAKSSXAAJv7a_vJCg8882.jpg)
![甘肅省張掖市山丹縣一中2024屆高考數(shù)學(xué)押題試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view14/M0A/1B/0B/wKhkGWYtpXaAKSSXAAJv7a_vJCg8883.jpg)
![甘肅省張掖市山丹縣一中2024屆高考數(shù)學(xué)押題試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view14/M0A/1B/0B/wKhkGWYtpXaAKSSXAAJv7a_vJCg8884.jpg)
![甘肅省張掖市山丹縣一中2024屆高考數(shù)學(xué)押題試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view14/M0A/1B/0B/wKhkGWYtpXaAKSSXAAJv7a_vJCg8885.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
甘肅省張掖市山丹縣一中2024屆高考數(shù)學(xué)押題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.2.設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,,則 D.若,,,則3.已知,則的值等于()A. B. C. D.4.若復(fù)數(shù),,其中是虛數(shù)單位,則的最大值為()A. B. C. D.5.近年來(lái),隨著網(wǎng)絡(luò)的普及和智能手機(jī)的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機(jī)抽取了名大學(xué)生進(jìn)行調(diào)查,各主要用途與對(duì)應(yīng)人數(shù)的結(jié)果統(tǒng)計(jì)如圖所示,現(xiàn)有如下說法:①可以估計(jì)使用主要聽音樂的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);②可以估計(jì)不足的大學(xué)生使用主要玩游戲;③可以估計(jì)使用主要找人聊天的大學(xué)生超過總數(shù)的.其中正確的個(gè)數(shù)為()A. B. C. D.6.已知命題,,則是()A., B.,.C., D.,.7.在直角梯形中,,,,,點(diǎn)為上一點(diǎn),且,當(dāng)?shù)闹底畲髸r(shí),()A. B.2 C. D.8.正項(xiàng)等比數(shù)列中的、是函數(shù)的極值點(diǎn),則()A. B.1 C. D.29.若復(fù)數(shù)滿足,復(fù)數(shù)的共軛復(fù)數(shù)是,則()A.1 B.0 C. D.10.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.11.一個(gè)超級(jí)斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項(xiàng)起,每一項(xiàng)都等于前面所有項(xiàng)之和(例如:1,3,4,8,16…).則首項(xiàng)為2,某一項(xiàng)為2020的超級(jí)斐波那契數(shù)列的個(gè)數(shù)為()A.3 B.4 C.5 D.612.已知集合,,若,則()A.4 B.-4 C.8 D.-8二、填空題:本題共4小題,每小題5分,共20分。13.已知全集為R,集合,則___________.14.正四棱柱中,,.若是側(cè)面內(nèi)的動(dòng)點(diǎn),且,則與平面所成角的正切值的最大值為___________.15.已知函數(shù),,若函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),則的取值范圍是_________.16.已知向量,,若向量與向量平行,則實(shí)數(shù)___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知在三棱臺(tái)中,,,.(1)求證:;(2)過的平面分別交,于點(diǎn),,且分割三棱臺(tái)所得兩部分幾何體的體積比為,幾何體為棱柱,求的長(zhǎng).提示:臺(tái)體的體積公式(,分別為棱臺(tái)的上、下底面面積,為棱臺(tái)的高).18.(12分)在平面直角坐標(biāo)系中,將曲線(為參數(shù))通過伸縮變換,得到曲線,設(shè)直線(為參數(shù))與曲線相交于不同兩點(diǎn),.(1)若,求線段的中點(diǎn)的坐標(biāo);(2)設(shè)點(diǎn),若,求直線的斜率.19.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),如果方程有兩個(gè)不等實(shí)根,求實(shí)數(shù)t的取值范圍,并證明.20.(12分)在直角坐標(biāo)系x0y中,把曲線α為參數(shù))上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程(1)寫出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點(diǎn)M在上,點(diǎn)N在上,求|MN|的最小值以及此時(shí)M的直角坐標(biāo).21.(12分)已知數(shù)列的前項(xiàng)和為,且點(diǎn)在函數(shù)的圖像上;(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿足:,,求的通項(xiàng)公式;(3)在第(2)問的條件下,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;22.(10分)超級(jí)病菌是一種耐藥性細(xì)菌,產(chǎn)生超級(jí)細(xì)菌的主要原因是用于抵抗細(xì)菌侵蝕的藥物越來(lái)越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對(duì)相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對(duì)它起不到什么作用,病人會(huì)因?yàn)楦腥径鹂膳碌难装Y,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級(jí)細(xì)菌,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有n()份血液樣本,每個(gè)樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)n次;(2)混合檢驗(yàn),將其中k(且)份血液樣本分別取樣混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這k份血液究竟哪幾份為陽(yáng)性,就要對(duì)這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為次,假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為p().(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽(yáng)性,若采用逐份檢驗(yàn)方式,求恰好經(jīng)過2次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)的概率;(2)現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.(i)試運(yùn)用概率統(tǒng)計(jì)的知識(shí),若,試求p關(guān)于k的函數(shù)關(guān)系式;(ii)若,采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求k的最大值.參考數(shù)據(jù):,,,,
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.2、C【解析】
根據(jù)空間中直線與平面、平面與平面位置關(guān)系相關(guān)定理依次判斷各個(gè)選項(xiàng)可得結(jié)果.【詳解】對(duì)于,當(dāng)為內(nèi)與垂直的直線時(shí),不滿足,錯(cuò)誤;對(duì)于,設(shè),則當(dāng)為內(nèi)與平行的直線時(shí),,但,錯(cuò)誤;對(duì)于,由,知:,又,,正確;對(duì)于,設(shè),則當(dāng)為內(nèi)與平行的直線時(shí),,錯(cuò)誤.故選:.【點(diǎn)睛】本題考查立體幾何中線面關(guān)系、面面關(guān)系有關(guān)命題的辨析,考查學(xué)生對(duì)于平行與垂直相關(guān)定理的掌握情況,屬于基礎(chǔ)題.3、A【解析】
由余弦公式的二倍角可得,,再由誘導(dǎo)公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點(diǎn)睛】本題考查了學(xué)生對(duì)二倍角公式的應(yīng)用,要求學(xué)生熟練掌握三角函數(shù)中的誘導(dǎo)公式,屬于簡(jiǎn)單題4、C【解析】
由復(fù)數(shù)的幾何意義可得表示復(fù)數(shù),對(duì)應(yīng)的兩點(diǎn)間的距離,由兩點(diǎn)間距離公式即可求解.【詳解】由復(fù)數(shù)的幾何意義可得,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)為,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)為,所以,其中,故選C【點(diǎn)睛】本題主要考查復(fù)數(shù)的幾何意義,由復(fù)數(shù)的幾何意義,將轉(zhuǎn)化為兩復(fù)數(shù)所對(duì)應(yīng)點(diǎn)的距離求值即可,屬于基礎(chǔ)題型.5、C【解析】
根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計(jì)算使用主要玩游戲的大學(xué)生所占的比例,可判斷②的正誤;計(jì)算使用主要找人聊天的大學(xué)生所占的比例,可判斷③的正誤.綜合得出結(jié)論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總?cè)藬?shù)為,,故超過的大學(xué)生使用主要玩游戲,所以②錯(cuò)誤;使用主要找人聊天的大學(xué)生人數(shù)為,因?yàn)?,所以③正確.故選:C.【點(diǎn)睛】本題考查統(tǒng)計(jì)中相關(guān)命題真假的判斷,計(jì)算出相應(yīng)的頻數(shù)與頻率是關(guān)鍵,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.6、B【解析】
根據(jù)全稱命題的否定為特稱命題,得到結(jié)果.【詳解】根據(jù)全稱命題的否定為特稱命題,可得,本題正確選項(xiàng):【點(diǎn)睛】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.7、B【解析】
由題,可求出,所以,根據(jù)共線定理,設(shè),利用向量三角形法則求出,結(jié)合題給,得出,進(jìn)而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點(diǎn)在線段上,設(shè),則,即,又因?yàn)樗?,所以,?dāng)時(shí),等號(hào)成立.所以.故選:B.【點(diǎn)睛】本題考查平面向量線性運(yùn)算中的加法運(yùn)算、向量共線定理,以及運(yùn)用二次函數(shù)求最值,考查轉(zhuǎn)化思想和解題能力.8、B【解析】
根據(jù)可導(dǎo)函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【詳解】解:依題意、是函數(shù)的極值點(diǎn),也就是的兩個(gè)根∴又是正項(xiàng)等比數(shù)列,所以∴.故選:B【點(diǎn)睛】本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.9、C【解析】
根據(jù)復(fù)數(shù)代數(shù)形式的運(yùn)算法則求出,再根據(jù)共軛復(fù)數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的運(yùn)算法則,考查共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.10、C【解析】
由題意可得面,可知,因?yàn)?,則面,于是.由此推出三棱錐外接球球心是的中點(diǎn),進(jìn)而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因?yàn)?,則面,于是,因此三棱錐外接球球心是的中點(diǎn).計(jì)算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點(diǎn)睛】本題主要考查簡(jiǎn)單的幾何體、球的表面積等基礎(chǔ)知識(shí);考查空間想象能力、推理論證能力、運(yùn)算求解能力及創(chuàng)新意識(shí),屬于中檔題.11、A【解析】
根據(jù)定義,表示出數(shù)列的通項(xiàng)并等于2020.結(jié)合的正整數(shù)性質(zhì)即可確定解的個(gè)數(shù).【詳解】由題意可知首項(xiàng)為2,設(shè)第二項(xiàng)為,則第三項(xiàng)為,第四項(xiàng)為,第五項(xiàng)為第n項(xiàng)為且,則,因?yàn)?,?dāng)?shù)闹悼梢詾?;即?個(gè)這種超級(jí)斐波那契數(shù)列,故選:A.【點(diǎn)睛】本題考查了數(shù)列新定義的應(yīng)用,注意自變量的取值范圍,對(duì)題意理解要準(zhǔn)確,屬于中檔題.12、B【解析】
根據(jù)交集的定義,,可知,代入計(jì)算即可求出.【詳解】由,可知,又因?yàn)?,所以時(shí),,解得.故選:B.【點(diǎn)睛】本題考查交集的概念,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先化簡(jiǎn)集合A,再求A∪B得解.【詳解】由題得A={0,1},所以A∪B={-1,0,1}.故答案為{-1,0,1}【點(diǎn)睛】本題主要考查集合的化簡(jiǎn)和并集運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.14、2.【解析】
如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),則,,又,得即;又平面,為與平面所成角,令,當(dāng)時(shí),最大,即與平面所成角的正切值的最大值為2.故答案為:2【點(diǎn)睛】本題主要考查了立體幾何中的動(dòng)點(diǎn)問題,考查了直線與平面所成角的計(jì)算.對(duì)于這類題,一般是建立空間直角坐標(biāo),在動(dòng)點(diǎn)坐標(biāo)內(nèi)引入?yún)?shù),將最值問題轉(zhuǎn)化為函數(shù)的最值問題求解,考查了學(xué)生的運(yùn)算求解能力和直觀想象能力.15、【解析】
先根據(jù)題意,求出的解得或,然后求出f(x)的導(dǎo)函數(shù),求其單調(diào)性以及最值,在根據(jù)題意求出函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),分情況討論求出的取值范圍.【詳解】解:令t=f(x),函數(shù)有3個(gè)不同的零點(diǎn),即+m=0有兩個(gè)不同的解,解之得即或因?yàn)榈膶?dǎo)函數(shù),令,解得x>e,,解得0<x<e,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為,且且f(1)=0;要使函數(shù)有3個(gè)不同的零點(diǎn),(1)有兩個(gè)不同的解,此時(shí)有一個(gè)解;(2)有兩個(gè)不同的解,此時(shí)有一個(gè)解當(dāng)有兩個(gè)不同的解,此時(shí)有一個(gè)解,此時(shí),不符合題意;或是不符合題意;所以只能是解得,此時(shí)=-m,此時(shí)有兩個(gè)不同的解,此時(shí)有一個(gè)解此時(shí),不符合題意;或是不符合題意;所以只能是解得,此時(shí)=,綜上:的取值范圍是故答案為【點(diǎn)睛】本題主要考查了函數(shù)與導(dǎo)函數(shù)的綜合,考查到了函數(shù)的零點(diǎn),導(dǎo)函數(shù)的應(yīng)用,以及數(shù)形結(jié)合的思想、分類討論的思想,屬于綜合性極強(qiáng)的題目,屬于難題.16、【解析】
由題可得,因?yàn)橄蛄颗c向量平行,所以,解得.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)2【解析】
(1)在中,利用勾股定理,證得,又由題設(shè)條件,得到,利用線面垂直的判定定理,證得平面,進(jìn)而得到;(2)設(shè)三棱臺(tái)和三棱柱的高都為上、下底面之間的距離為,根據(jù)棱臺(tái)的體積公式,列出方程求得,得到,即可求解.【詳解】(1)由題意,在中,,,所以,可得,因?yàn)?,可?又由,,平面,所以平面,因?yàn)槠矫妫?(2)因?yàn)?,可得,令,,設(shè)三棱臺(tái)和三棱柱的高都為上、下底面之間的距離為,則,整理得,即,解得,即,又由,所以.【點(diǎn)睛】本題主要考查了直線與平面垂直的判定與應(yīng)用,以及幾何體的體積公式的應(yīng)用,其中解答中熟記線面位置關(guān)系的判定定理與性質(zhì)定理,以及熟練應(yīng)用幾何體的體積公式進(jìn)行求解是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.18、(1);(2).【解析】
(1)由l參數(shù)方程與橢圓方程聯(lián)立可得A、B兩點(diǎn)參數(shù)和,再利用M點(diǎn)的參數(shù)為A、B兩點(diǎn)參數(shù)和的一半即可求M的坐標(biāo);(2)利用直線參數(shù)方程的幾何意義得到,再利用計(jì)算即可,但要注意判別式還要大于0.【詳解】(1)由已知,曲線的參數(shù)方程為(為參數(shù)),其普通方程為,當(dāng)時(shí),將(為參數(shù))代入得,設(shè)直線l上A、B兩點(diǎn)所對(duì)應(yīng)的參數(shù)為,中點(diǎn)M所對(duì)應(yīng)的參數(shù)為,則,所以的坐標(biāo)為;(2)將代入得,則,因?yàn)榧?,所以,故,由得,所?【點(diǎn)睛】本題考查了伸縮變換、參數(shù)方程與普通方程的互化、直線參數(shù)方程的幾何意義等知識(shí),考查學(xué)生的計(jì)算能力,是一道中檔題.19、(1)當(dāng)時(shí),的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;當(dāng)時(shí),的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(2),證明見解析.【解析】
(1)求出,對(duì)分類討論,分別求出的解,即可得出結(jié)論;(2)由(1)得出有兩解時(shí)的范圍,以及關(guān)系,將,等價(jià)轉(zhuǎn)化為證明,不妨設(shè),令,則,即證,構(gòu)造函數(shù),只要證明對(duì)于任意恒成立即可.【詳解】(1)的定義域?yàn)镽,且.由,得;由,得.故當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.(2)由(1)知當(dāng)時(shí),,且.當(dāng)時(shí),;當(dāng)時(shí),.當(dāng)時(shí),直線與的圖像有兩個(gè)交點(diǎn),實(shí)數(shù)t的取值范圍是.方程有兩個(gè)不等實(shí)根,,,,,,即.要證,只需證,即證,不妨設(shè).令,則,則要證,即證.令,則.令,則,在上單調(diào)遞增,.,在上單調(diào)遞增,,即成立,即成立..【點(diǎn)睛】本題考查函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用,涉及到函數(shù)單調(diào)性、極值、零點(diǎn)、不等式證明,構(gòu)造函數(shù)函數(shù)是解題的關(guān)鍵,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于較難題.20、(1)的普通方程為,的直角坐標(biāo)方程為.(2)最小值為,此時(shí)【解析】
(1)由的參數(shù)方程消去求得的普通方程,利用極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式,求得的直角坐標(biāo)方程.(2)設(shè)出點(diǎn)的坐標(biāo),利用點(diǎn)到直線的距離公式求得最小值的表達(dá)式,結(jié)合三角函數(shù)的指數(shù)求得的最小值以及此時(shí)點(diǎn)的坐標(biāo).【詳解】(1)由題意知的參數(shù)方程為(為參數(shù))所以的普通方程為.由得,所以的直角坐標(biāo)方程為.(2)由題意,可設(shè)點(diǎn)的直角坐標(biāo)為,因?yàn)槭侵本€,所以的最小值即為到的距離,因?yàn)椋?dāng)且僅當(dāng)時(shí),取得最小值為,此時(shí)的直角坐標(biāo)為即.【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標(biāo)方程化為直角坐標(biāo)方程,考查利用曲線參數(shù)方程求解點(diǎn)到直線距離的最小值問題,屬于中檔題.21、(1)(2)當(dāng)n為偶數(shù)時(shí),;當(dāng)n為奇數(shù)時(shí),.(3)【解析】
(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)利用遞推公式及累加法,即可求得當(dāng)n為奇數(shù)或偶數(shù)時(shí)的通項(xiàng)公式.也可利用數(shù)學(xué)歸納法,先猜想出通項(xiàng)公式,再用數(shù)學(xué)歸納法證明.(3)分類討論,當(dāng)n為奇數(shù)或偶數(shù)時(shí),分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當(dāng)時(shí),,當(dāng)時(shí),也滿足上式.所以.(2)解法一:由(1)可知,即.當(dāng)時(shí),,①當(dāng)時(shí),,所以,②當(dāng)時(shí),,③當(dāng)時(shí)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國(guó)圓平底燒瓶市場(chǎng)調(diào)查研究報(bào)告
- 2025年金屬襯膠項(xiàng)目可行性研究報(bào)告
- 2025年超薄膨脹型鋼結(jié)構(gòu)防火材料項(xiàng)目可行性研究報(bào)告
- 2025年膨化糯米球項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國(guó)細(xì)菌及藥敏檢測(cè)系統(tǒng)行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年瑪瑙飾品項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國(guó)活動(dòng)工具車行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2031年中國(guó)控溫儀行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年手動(dòng)強(qiáng)力剪刀項(xiàng)目可行性研究報(bào)告
- 2025年塑膠旅游用品項(xiàng)目可行性研究報(bào)告
- 中國(guó)太陽(yáng)能光電建筑行業(yè)現(xiàn)狀調(diào)研分析及市場(chǎng)前景預(yù)測(cè)報(bào)告(2024版)
- 關(guān)于防范遏制礦山領(lǐng)域重特大生產(chǎn)安全事故的硬措施課件
- 2025年中國(guó)成都餐飲業(yè)市場(chǎng)運(yùn)營(yíng)態(tài)勢(shì)分析及投資前景預(yù)測(cè)報(bào)告
- 2024年榆林職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試歷年參考題庫(kù)含答案解析
- 2025年春新外研版(三起)英語(yǔ)三年級(jí)下冊(cè)課件 Unit3第1課時(shí)startup
- (教研室)2023屆山東省德州市、煙臺(tái)市高考一模地理試題 附答案
- 《河南民俗文化》課件
- 康復(fù)健康小屋課件
- 項(xiàng)目合作備忘錄范文
- 2024年事業(yè)單位租車服務(wù)滿意度調(diào)查及改進(jìn)協(xié)議3篇
- 婦產(chǎn)科醫(yī)生個(gè)人年終述職報(bào)告課件
評(píng)論
0/150
提交評(píng)論