廣東省江門市恩平市2023-2024學年中考聯考數學試卷含解析_第1頁
廣東省江門市恩平市2023-2024學年中考聯考數學試卷含解析_第2頁
廣東省江門市恩平市2023-2024學年中考聯考數學試卷含解析_第3頁
廣東省江門市恩平市2023-2024學年中考聯考數學試卷含解析_第4頁
廣東省江門市恩平市2023-2024學年中考聯考數學試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省江門市恩平市2023-2024學年中考聯考數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB與△OCD的面積分別是S1和S2,△OAB與△OCD的周長分別是C1和C2,則下列等式一定成立的是()A. B. C. D.2.化簡的結果是()A.±4 B.4 C.2 D.±23.港珠澳大橋是連接香港、珠海、澳門的超大型跨海通道,全長約55000米,把55000用科學記數法表示為()A.55×103 B.5.5×104 C.5.5×105 D.0.55×1054.下列計算正確的是()A.(﹣8)﹣8=0 B.3+3=33 C.(﹣3b)2=9b2 D.a6÷a2=a35.為了紀念物理學家費米,物理學界以費米(飛米)作為長度單位.已知1飛米等于0.000000000000001米,把0.000000000000001這個數用科學記數法表示為()A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣126.如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC.有下列結論:①abc<0;②3b+4c<0;③c>﹣1;④關于x的方程ax2+bx+c=0有一個根為﹣,其中正確的結論個數是()A.1 B.2 C.3 D.47.一、單選題如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=()A.75° B.80° C.85° D.90°8.某校40名學生參加科普知識競賽(競賽分數都是整數),競賽成績的頻數分布直方圖如圖所示,成績的中位數落在()A.50.5~60.5分 B.60.5~70.5分 C.70.5~80.5分 D.80.5~90.5分9.4的平方根是()A.2 B.±2 C.8 D.±810.我國作家莫言獲得諾貝爾文學獎之后,他的代表作品《蛙》的銷售量就比獲獎之前增長了180倍,達到2100000冊.把2100000用科學記數法表示為()A.0.21×108 B.21×106 C.2.1×107 D.2.1×10611.小文同學統計了某棟居民樓中全體居民每周使用手機支付的次數,并繪制了直方圖.根據圖中信息,下列說法:①這棟居民樓共有居民140人②每周使用手機支付次數為28~35次的人數最多③有的人每周使用手機支付的次數在35~42次④每周使用手機支付不超過21次的有15人其中正確的是()A.①② B.②③ C.③④ D.④12.甲、乙兩船從相距300km的A、B兩地同時出發(fā)相向而行,甲船從A地順流航行180km時與從B地逆流航行的乙船相遇,水流的速度為6km/h,若甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為()A.= B.=C.= D.=二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知且,則=__________.14.計算(+)(-)的結果等于________.15.如圖,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜邊AB上的中線,將△BCD沿直線CD翻折至△ECD的位置,連接AE.若DE∥AC,計算AE的長度等于_____.16.某文化商場同時賣出兩臺電子琴,每臺均賣960元,以成本計算,其中一臺盈利20%,另一臺虧本20%,則本次出售中商場是_____(請寫出盈利或虧損)_____元.17.將一副三角板如圖放置,若,則的大小為______.18.閱讀下面材料:在數學課上,老師提出如下問題:小亮的作法如下:老師說:“小亮的作法正確”請回答:小亮的作圖依據是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖所示,已知,試判斷與的大小關系,并說明理由.20.(6分)某公司生產的某種產品每件成本為40元,經市場調查整理出如下信息:①該產品90天售量(n件)與時間(第x天)滿足一次函數關系,部分數據如下表:時間(第x天)12310…日銷售量(n件)198196194?…②該產品90天內每天的銷售價格與時間(第x天)的關系如下表:時間(第x天)1≤x<5050≤x≤90銷售價格(元/件)x+60100(1)求出第10天日銷售量;(2)設銷售該產品每天利潤為y元,請寫出y關于x的函數表達式,并求出在90天內該產品的銷售利潤最大?最大利潤是多少?(提示:每天銷售利潤=日銷售量×(每件銷售價格-每件成本))(3)在該產品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結果.21.(6分)綜合與實踐﹣﹣旋轉中的數學問題背景:在一次綜合實踐活動課上,同學們以兩個矩形為對象,研究相似矩形旋轉中的問題:已知矩形ABCD∽矩形A′B′C′D′,它們各自對角線的交點重合于點O,連接AA′,CC′.請你幫他們解決下列問題:觀察發(fā)現:(1)如圖1,若A′B′∥AB,則AA′與CC′的數量關系是______;操作探究:(2)將圖1中的矩形ABCD保持不動,矩形A′B′C′D′繞點O逆時針旋轉角度α(0°<α≤90°),如圖2,在矩形A′B′C′D′旋轉的過程中,(1)中的結論還成立嗎?若成立,請證明;若不成立,請說明理由;操作計算:(3)如圖3,在(2)的條件下,當矩形A′B′C′D′繞點O旋轉至AA′⊥A′D′時,若AB=6,BC=8,A′B′=3,求AA′的長.22.(8分)如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上.(1)求拋物線的解析式;(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標.23.(8分)已知拋物線的開口向上頂點為P(1)若P點坐標為(4,一1),求拋物線的解析式;(2)若此拋物線經過(4,一1),當-1≤x≤2時,求y的取值范圍(用含a的代數式表示)(3)若a=1,且當0≤x≤1時,拋物線上的點到x軸距離的最大值為6,求b的值24.(10分)工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)求長方體底面面積為12dm2時,裁掉的正方形邊長多大?25.(10分)某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調查,并根據調查結果繪制了如下兩幅不完整的統計圖.根據統計圖的信息解決下列問題:(1)本次調查的學生有多少人?(2)補全上面的條形統計圖;(3)扇形統計圖中C對應的中心角度數是;(4)若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?26.(12分)解方程組:.27.(12分)如圖,AB是半徑為2的⊙O的直徑,直線l與AB所在直線垂直,垂足為C,OC=3,P是圓上異于A、B的動點,直線AP、BP分別交l于M、N兩點.(1)當∠A=30°時,MN的長是;(2)求證:MC?CN是定值;(3)MN是否存在最大或最小值,若存在,請寫出相應的最值,若不存在,請說明理由;(4)以MN為直徑的一系列圓是否經過一個定點,若是,請確定該定點的位置,若不是,請說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】A選項,在△OAB∽△OCD中,OB和CD不是對應邊,因此它們的比值不一定等于相似比,所以A選項不一定成立;B選項,在△OAB∽△OCD中,∠A和∠C是對應角,因此,所以B選項不成立;C選項,因為相似三角形的面積比等于相似比的平方,所以C選項不成立;D選項,因為相似三角形的周長比等于相似比,所以D選項一定成立.故選D.2、B【解析】

根據算術平方根的意義求解即可.【詳解】4,故選:B.【點睛】本題考查了算術平方根的意義,一般地,如果一個正數x的平方等于a,即x2=a,那么這個正數x叫做a的算術平方根,正數a有一個正的算術平方根,0的算術平方根是0,負數沒有算術平方根.3、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】55000是5位整數,小數點向左移動4位后所得的數即可滿足科學記數法的要求,由此可知10的指數為4,所以,55000用科學記數法表示為5.5×104,故選B.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.4、C【解析】選項A,原式=-16;選項B,不能夠合并;選項C,原式=9b2;選項D,原式=5、A【解析】

根據科學記數法的表示方法解答.【詳解】解:把這個數用科學記數法表示為.故選:.【點睛】此題重點考查學生對科學記數法的應用,熟練掌握小于0的數用科學記數法表示法是解題的關鍵.6、B【解析】

由二次函數圖象的開口方向、對稱軸及與y軸的交點可分別判斷出a、b、c的符號,從而可判斷①;由對稱軸=2可知a=,由圖象可知當x=1時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;把-代入方程整理可得ac2-bc+c=0,結合③可判斷④;從而可得出答案.【詳解】解:∵圖象開口向下,∴a<0,∵對稱軸為直線x=2,∴>0,∴b>0,∵與y軸的交點在x軸的下方,∴c<0,∴abc>0,故①錯誤.∵對稱軸為直線x=2,∴=2,∴a=,∵由圖象可知當x=1時,y>0,∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,∴3b+4c>0,故②錯誤.∵由圖象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正確.∵假設方程的一個根為x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,兩邊同時乘c可得ac2-bc+c=0,∴方程有一個根為x=-c,由③可知-c=OA,而當x=OA是方程的根,∴x=-c是方程的根,即假設成立,故④正確.綜上可知正確的結論有三個:③④.故選B.【點睛】本題主要考查二次函數的圖象和性質.熟練掌握圖象與系數的關系以及二次函數與方程、不等式的關系是解題的關鍵.特別是利用好題目中的OA=OC,是解題的關鍵.7、A【解析】分析:依據AD是BC邊上的高,∠ABC=60°,即可得到∠BAD=30°,依據∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根據△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.詳解:∵AD是BC邊上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故選A.點睛:本題考查了三角形內角和定理:三角形內角和為180°.解決問題的關鍵是三角形外角性質以及角平分線的定義的運用.8、C【解析】分析:由頻數分布直方圖知這組數據共有40個,則其中位數為第20、21個數據的平均數,而第20、21個數據均落在70.5~80.5分這一分組內,據此可得.詳解:由頻數分布直方圖知,這組數據共有3+6+8+8+9+6=40個,則其中位數為第20、21個數據的平均數,而第20、21個數據均落在70.5~80.5分這一分組內,所以中位數落在70.5~80.5分.故選C.點睛:本題主要考查了頻數(率)分布直方圖和中位數,解題的關鍵是掌握將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數.如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.9、B【解析】

依據平方根的定義求解即可.【詳解】∵(±1)1=4,∴4的平方根是±1.故選B.【點睛】本題主要考查的是平方根的定義,掌握平方根的定義是解題的關鍵.10、D【解析】2100000=2.1×106.點睛:對于一個絕對值較大的數,用科學記數法寫成的形式,其中,n是比原整數位數少1的數.11、B【解析】

根據直方圖表示的意義求得統計的總人數,以及每組的人數即可判斷.本題考查讀頻數分布直方圖的能力和利用統計圖獲取信息的能力.利用統計圖獲取信息時,必須認真觀察、分析、研究統計圖,才能作出正確的判斷和解.【詳解】解:①這棟居民樓共有居民3+10+15+22+30+25+20=125人,此結論錯誤;②每周使用手機支付次數為28~35次的人數最多,此結論正確;③每周使用手機支付的次數在35~42次所占比例為,此結論正確;④每周使用手機支付不超過21次的有3+10+15=28人,此結論錯誤;故選:B.【點睛】此題考查直方圖的意義,解題的關鍵在于理解直方圖表示的意義求得統計的數據12、A【解析】分析:直接利用兩船的行駛距離除以速度=時間,得出等式求出答案.詳解:設甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為:=.故選A.點睛:此題主要考查了由實際問題抽象出分式方程,正確表示出行駛的時間和速度是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】分析:根據相似三角形的面積比等于相似比的平方求解即可.詳解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:.點睛:本題的關鍵是理解相似三角形的面積比等于相似比的平方.14、2【解析】

利用平方差公式進行計算即可得.【詳解】原式==5-3=2,故答案為:2.【點睛】本題考查了二次根式的混合運算,掌握平方差公式結構特征是解本題的關鍵.15、2【解析】

根據題意、解直角三角形、菱形的性質、翻折變化可以求得AE的長.【詳解】由題意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等邊三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四邊形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=2,∴AE=2.故答案為2.【點睛】本題考查翻折變化、平行線的性質、直角三角形斜邊上的中線,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.16、虧損1【解析】

設盈利20%的電子琴的成本為x元,設虧本20%的電子琴的成本為y元,再根據(1+利潤率)×成本=售價列出方程,解方程計算出x、y的值,進而可得答案.【詳解】設盈利20%的電子琴的成本為x元,

x(1+20%)=960,

解得x=10;

設虧本20%的電子琴的成本為y元,

y(1-20%)=960,

解得y=1200;

∴960×2-(10+1200)=-1,

∴虧損1元,

故答案是:虧損;1.【點睛】考查了一元一次方程組的應用,關鍵是正確理解題意,找出題目中的等量關系,設出未知數,列出方程.17、160°【解析】試題分析:先求出∠COA和∠BOD的度數,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案為160°.考點:余角和補角.18、兩點確定一條直線;同圓或等圓中半徑相等【解析】

根據尺規(guī)作圖的方法,兩點之間確定一條直線的原理即可解題.【詳解】解:∵兩點之間確定一條直線,CD和AB都是圓的半徑,∴AB=CD,依據是兩點確定一條直線;同圓或等圓中半徑相等.【點睛】本題考查了尺規(guī)作圖:一條線段等于已知線段,屬于簡單題,熟悉尺規(guī)作圖方法是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、.【解析】

首先判斷∠AED與∠ACB是一對同位角,然后根據已知條件推出DE∥BC,得出兩角相等.【詳解】解:∠AED=∠ACB.理由:如圖,分別標記∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定義),∠1+∠2=180°(已知).

∴∠2=∠1.

∴EF∥AB(內錯角相等,兩直線平行).

∴∠3=∠ADE(兩直線平行,內錯角相等).

∵∠3=∠B(已知),

∴∠B=∠ADE(等量代換).

∴DE∥BC(同位角相等,兩直線平行).

∴∠AED=∠ACB(兩直線平行,同位角相等).【點睛】本題重點考查平行線的性質和判定,難度適中.20、(1)1件;(2)第40天,利潤最大7200元;(3)46天【解析】試題分析:(1)根據待定系數法解出一次函數解析式,然后把x=10代入即可;(2)設利潤為y元,則當1≤x<50時,y=﹣2x2+160x+4000;當50≤x≤90時,y=﹣120x+12000,分別求出各段上的最大值,比較即可得到結論;(3)直接寫出在該產品銷售的過程中,共有46天銷售利潤不低于5400元.試題解析:解:(1)∵n與x成一次函數,∴設n=kx+b,將x=1,m=198,x=3,m=194代入,得:,解得:,所以n關于x的一次函數表達式為n=-2x+200;當x=10時,n=-2×10+200=1.(2)設銷售該產品每天利潤為y元,y關于x的函數表達式為:當1≤x<50時,y=-2x2+160x+4000=-2(x-40)2+7200,∵-2<0,∴當x=40時,y有最大值,最大值是7200;當50≤x≤90時,y=-120x+12000,∵-120<0,∴y隨x增大而減小,即當x=50時,y的值最大,最大值是6000;綜上所述:當x=40時,y的值最大,最大值是7200,即在90天內該產品第40天的銷售利潤最大,最大利潤是7200元;(3)在該產品銷售的過程中,共有46天銷售利潤不低于5400元.21、(1)AA′=CC′;(2)成立,證明見解析;(3)AA′=【解析】

(1)連接AC、A′C′,根據題意得到點A、A′、C′、C在同一條直線上,根據矩形的性質得到OA=OC,OA′=OC′,得到答案;(2)連接AC、A′C′,證明△A′OA≌△C′OC,根據全等三角形的性質證明;(3)連接AC,過C作CE⊥AB′,交AB′的延長線于E,根據相似多邊形的性質求出B′C′,根據勾股定理計算即可.【詳解】(1)AA′=CC′,理由如下:連接AC、A′C′,∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,∵A′B′∥AB,∴點A、A′、C′、C在同一條直線上,由矩形的性質可知,OA=OC,OA′=OC′,∴AA′=CC′,故答案為AA′=CC′;(2)(1)中的結論還成立,AA′=CC′,理由如下:連接AC、A′C′,則AC、A′C′都經過點O,由旋轉的性質可知,∠A′OA=∠C′OC,∵四邊形ABCD和四邊形A′B′C′D′都是矩形,∴OA=OC,OA′=OC′,在△A′OA和△C′OC中,,∴△A′OA≌△C′OC,∴AA′=CC′;(3)連接AC,過C作CE⊥AB′,交AB′的延長線于E,∵矩形ABCD∽矩形A′B′C′D′,∴,即,解得,B′C′=4,∵∠EB′C=∠B′C′C=∠E=90°,∴四邊形B′ECC′為矩形,∴EC=B′C′=4,在Rt△ABC中,AC==10,在Rt△AEC中,AE==2,∴AA′+B′E=2﹣3,又AA′=CC′=B′E,∴AA′=.【點睛】本題考查的是矩形的性質、旋轉變換的性質、全等三角形的判定和性質,掌握旋轉變換的性質、矩形的性質是解題的關鍵.22、解:(1);(2)存在,P(,);(1)Q點坐標為(0,-)或(0,)或(0,-1)或(0,-1).【解析】

(1)已知點A坐標可確定直線AB的解析式,進一步能求出點B的坐標.點A是拋物線的頂點,那么可以將拋物線的解析式設為頂點式,再代入點B的坐標,依據待定系數法可解.(2)首先由拋物線的解析式求出點C的坐標,在△POB和△POC中,已知的條件是公共邊OP,若OB與OC不相等,那么這兩個三角形不能構成全等三角形;若OB等于OC,那么還要滿足的條件為:∠POC=∠POB,各自去掉一個直角后容易發(fā)現,點P正好在第二象限的角平分線上,聯立直線y=-x與拋物線的解析式,直接求交點坐標即可,同時還要注意點P在第二象限的限定條件.(1)分別以A、B、Q為直角頂點,分類進行討論,找出相關的相似三角形,依據對應線段成比例進行求解即可.【詳解】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=1,∴B的坐標是(1,0).∵A為頂點,∴設拋物線的解析為y=a(x﹣1)2﹣4,把B(1,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣1.(2)存在.∵OB=OC=1,OP=OP,∴當∠POB=∠POC時,△POB≌△POC,此時PO平分第二象限,即PO的解析式為y=﹣x.設P(m,﹣m),則﹣m=m2﹣2m﹣1,解得m=(m=>0,舍),∴P(,).(1)①如圖,當∠Q1AB=90°時,△DAQ1∽△DOB,∴,即=,∴DQ1=,∴OQ1=,即Q1(0,-);②如圖,當∠Q2BA=90°時,△BOQ2∽△DOB,∴,即,∴OQ2=,即Q2(0,);③如圖,當∠AQ1B=90°時,作AE⊥y軸于E,則△BOQ1∽△Q1EA,∴,即∴OQ12﹣4OQ1+1=0,∴OQ1=1或1,即Q1(0,﹣1),Q4(0,﹣1).綜上,Q點坐標為(0,-)或(0,)或(0,﹣1)或(0,﹣1).23、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.【解析】

(1)將P(4,-1)代入,可求出解析式

(2)將(4,-1)代入求得:b=-4a-1,再代入對稱軸直線中,可判斷,且開口向上,所以y隨x的增大而減小,再把x=-1,x=2代入即可求得.

(3)觀察圖象可得,當0≤x≤1時,拋物線上的點到x軸距離的最大值為6,這些點可能為x=0,x=1,三種情況,再根據對稱軸在不同位置進行討論即可.【詳解】解:(1)由此拋物線頂點為P(4,-1),所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=,b=-8a=-2所以拋物線解析式為:;(2)由此拋物線經過點C(4,-1),所以一1=16a+4b+3,即b=-4a-1.因為拋物線的開口向上,則有其對稱軸為直線,而所以當-1≤x≤2時,y隨著x的增大而減小當x=-1時,y=a+(4a+1)+3=4+5a當x=2時,y=4a-2(4a+1)+3=1-4a所以當-1≤x≤2時,1-4a≤y≤4+5a;(3)當a=1時,拋物線的解析式為y=x2+bx+3∴拋物線的對稱軸為直線由拋物線圖象可知,僅當x=0,x=1或x=-時,拋物線上的點可能離x軸最遠分別代入可得,當x=0時,y=3當x=1時,y=b+4當x=-時,y=-+3①當一<0,即b>0時,3≤y≤b+4,由b+4=6解得b=2②當0≤-≤1時,即一2≤b≤0時,△=b2-12<0,拋物線與x軸無公共點由b+4=6解得b=2(舍去);③當,即b<-2時,b+4≤y≤3,由b+4=-6解得b=-10綜上,b=2或-10【點睛】本題考查了二次函數的性質,待定系數法求函數解析式,以及最值問題,關鍵是對稱軸在不同的范圍內,拋物線上的點到x軸距離的最大值的點不同.24、裁掉的正方形的邊長為2dm,底面積為12dm2.【解析】試題分析:設裁掉的正方形的邊長為xdm,則制作無蓋的長方體容器的長為(10-2x)dm,寬為(6-2x)dm,根據長方體底面面積為12dm2列出方程,解方程即可求得裁掉的正方形邊長.試題解析:設裁掉的正方形的邊長為xdm,由題意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的邊長為2dm,底面積為12dm2.25、(1)150人;(2)補圖見解析;(3)144°;(4)300盒.【解析】

(1)根據喜好A口味的牛奶的學生人數和所占百分比,即可求出本次調查的學生數.(2)用調查總人數減去A、B、D三種喜好不同口味牛奶的人數,求出喜好C口味牛奶的人數,補全統計圖.再用360°乘以喜好C口味的牛奶人數所占百分比求出對應中心角度數.(3)用總人數乘以A、B口味牛奶喜歡人數所占的百分比得出答案.【詳解】解:(1)本次調查的學生有30÷20%=150人;(2)C類別人數為150﹣(30+45+15)=60人

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論