2023-2024學(xué)年安徽省廬江縣六校聯(lián)盟高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第1頁(yè)
2023-2024學(xué)年安徽省廬江縣六校聯(lián)盟高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第2頁(yè)
2023-2024學(xué)年安徽省廬江縣六校聯(lián)盟高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第3頁(yè)
2023-2024學(xué)年安徽省廬江縣六校聯(lián)盟高三下學(xué)期一模考試數(shù)學(xué)試題含解析_第4頁(yè)
2023-2024學(xué)年安徽省廬江縣六校聯(lián)盟高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年安徽省廬江縣六校聯(lián)盟高三下學(xué)期一模考試數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.52.已知復(fù)數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.3.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.4.設(shè),滿足,則的取值范圍是()A. B. C. D.5.如圖,在等腰梯形中,,,,為的中點(diǎn),將與分別沿、向上折起,使、重合為點(diǎn),則三棱錐的外接球的體積是()A. B.C. D.6.將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再將圖像上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,若為奇函數(shù),則的最小值為()A. B. C. D.7.臺(tái)球是一項(xiàng)國(guó)際上廣泛流行的高雅室內(nèi)體育運(yùn)動(dòng),也叫桌球(中國(guó)粵港澳地區(qū)的叫法)、撞球(中國(guó)地區(qū)的叫法)控制撞球點(diǎn)、球的旋轉(zhuǎn)等控制母球走位是擊球的一項(xiàng)重要技術(shù),一次臺(tái)球技術(shù)表演節(jié)目中,在臺(tái)球桌上,畫出如圖正方形ABCD,在點(diǎn)E,F(xiàn)處各放一個(gè)目標(biāo)球,表演者先將母球放在點(diǎn)A處,通過(guò)擊打母球,使其依次撞擊點(diǎn)E,F(xiàn)處的目標(biāo)球,最后停在點(diǎn)C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長(zhǎng)為()A.50cm B.40cm C.50cm D.20cm8.如圖,平面與平面相交于,,,點(diǎn),點(diǎn),則下列敘述錯(cuò)誤的是()A.直線與異面B.過(guò)只有唯一平面與平行C.過(guò)點(diǎn)只能作唯一平面與垂直D.過(guò)一定能作一平面與垂直9.在直角梯形中,,,,,點(diǎn)為上一點(diǎn),且,當(dāng)?shù)闹底畲髸r(shí),()A. B.2 C. D.10.連接雙曲線及的4個(gè)頂點(diǎn)的四邊形面積為,連接4個(gè)焦點(diǎn)的四邊形的面積為,則當(dāng)取得最大值時(shí),雙曲線的離心率為()A. B. C. D.11.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件12.如圖所示,直三棱柱的高為4,底面邊長(zhǎng)分別是5,12,13,當(dāng)球與上底面三條棱都相切時(shí)球心到下底面距離為8,則球的體積為()A.1605π3 B.642二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),滿足條件,則的最大值為_(kāi)_________.14.在平面直角坐標(biāo)系中,雙曲線的焦距為,若過(guò)右焦點(diǎn)且與軸垂直的直線與兩條漸近線圍成的三角形面積為,則雙曲線的離心率為_(kāi)___________.15.已知雙曲線的一條漸近線方程為,則________.16.設(shè)函數(shù),當(dāng)時(shí),記最大值為,則的最小值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列和,前項(xiàng)和為,且,是各項(xiàng)均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.18.(12分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).19.(12分)如圖,四棱錐P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,(Ⅰ)證明;AC⊥BP;(Ⅱ)求直線AD與平面APC所成角的正弦值.20.(12分)已知直線與橢圓恰有一個(gè)公共點(diǎn),與圓相交于兩點(diǎn).(I)求與的關(guān)系式;(II)點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱.若當(dāng)時(shí),的面積取到最大值,求橢圓的離心率.21.(12分)如圖,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分別是AC,B1C1的中點(diǎn).求證:(1)MN∥平面ABB1A1;(2)AN⊥A1B.22.(10分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)若,求曲線與的交點(diǎn)坐標(biāo);(2)過(guò)曲線上任意一點(diǎn)作與夾角為45°的直線,交于點(diǎn),且的最大值為,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

還原幾何體的直觀圖,可將此三棱錐放入長(zhǎng)方體中,利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【點(diǎn)睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計(jì)算能力,屬于中檔題.2、C【解析】

把代入,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡(jiǎn),由實(shí)部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.3、A【解析】

根據(jù)題意,可得幾何體,利用體積計(jì)算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【點(diǎn)睛】本題考查了常見(jiàn)幾何體的三視圖和體積計(jì)算,屬于基礎(chǔ)題.4、C【解析】

首先繪制出可行域,再繪制出目標(biāo)函數(shù),根據(jù)可行域范圍求出目標(biāo)函數(shù)中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標(biāo)函數(shù)在點(diǎn)處取得最小值,故目標(biāo)函數(shù)的最小值為,故的取值范圍是.故選:D.【點(diǎn)睛】本題主要考查了線性規(guī)劃中目標(biāo)函數(shù)的取值范圍的問(wèn)題,屬于基礎(chǔ)題.5、A【解析】

由題意等腰梯形中的三個(gè)三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長(zhǎng)為1的正四面體,設(shè)是的中心,則平面,,,外接球球心必在高上,設(shè)外接球半徑為,即,∴,解得,球體積為.故選:A.【點(diǎn)睛】本題考查求球的體積,解題關(guān)鍵是由已知條件確定折疊成的三棱錐是正四面體.6、C【解析】

根據(jù)三角函數(shù)的變換規(guī)則表示出,根據(jù)是奇函數(shù),可得的取值,再求其最小值.【詳解】解:由題意知,將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,得,再將圖像上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,,因?yàn)槭瞧婧瘮?shù),所以,解得,因?yàn)椋缘淖钚≈禐?故選:【點(diǎn)睛】本題考查三角函數(shù)的變換以及三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.7、D【解析】

過(guò)點(diǎn)做正方形邊的垂線,如圖,設(shè),利用直線三角形中的邊角關(guān)系,將用表示出來(lái),根據(jù),列方程求出,進(jìn)而可得正方形的邊長(zhǎng).【詳解】過(guò)點(diǎn)做正方形邊的垂線,如圖,設(shè),則,,則,因?yàn)椋瑒t,整理化簡(jiǎn)得,又,得,.即該正方形的邊長(zhǎng)為.故選:D.【點(diǎn)睛】本題考查直角三角形中的邊角關(guān)系,關(guān)鍵是要構(gòu)造直角三角形,是中檔題.8、D【解析】

根據(jù)異面直線的判定定理、定義和性質(zhì),結(jié)合線面垂直的關(guān)系,對(duì)選項(xiàng)中的命題判斷.【詳解】A.假設(shè)直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質(zhì)知,過(guò)只有唯一平面與平行,故正確.C.根據(jù)過(guò)一點(diǎn)有且只有一個(gè)平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質(zhì)知,過(guò)不一定能作一平面與垂直,故錯(cuò)誤.故選:D【點(diǎn)睛】本題主要考查異面直線的定義,性質(zhì)以及線面關(guān)系,還考查了理解辨析的能力,屬于中檔題.9、B【解析】

由題,可求出,所以,根據(jù)共線定理,設(shè),利用向量三角形法則求出,結(jié)合題給,得出,進(jìn)而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點(diǎn)在線段上,設(shè),則,即,又因?yàn)樗裕?,?dāng)時(shí),等號(hào)成立.所以.故選:B.【點(diǎn)睛】本題考查平面向量線性運(yùn)算中的加法運(yùn)算、向量共線定理,以及運(yùn)用二次函數(shù)求最值,考查轉(zhuǎn)化思想和解題能力.10、D【解析】

先求出四個(gè)頂點(diǎn)、四個(gè)焦點(diǎn)的坐標(biāo),四個(gè)頂點(diǎn)構(gòu)成一個(gè)菱形,求出菱形的面積,四個(gè)焦點(diǎn)構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時(shí)有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個(gè)頂點(diǎn)的坐標(biāo)為,四個(gè)焦點(diǎn)的坐標(biāo)為,四個(gè)頂點(diǎn)形成的四邊形的面積,四個(gè)焦點(diǎn)連線形成的四邊形的面積,所以,當(dāng)取得最大值時(shí)有,,離心率,故選:D.【點(diǎn)睛】該題考查的是有關(guān)雙曲線的離心率的問(wèn)題,涉及到的知識(shí)點(diǎn)有共軛雙曲線的頂點(diǎn),焦點(diǎn),菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡(jiǎn)單題目.11、B【解析】

先解不等式化簡(jiǎn)兩個(gè)條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對(duì)值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點(diǎn)睛】本題考查了必要不充分條件的判定,考查了學(xué)生數(shù)學(xué)運(yùn)算,邏輯推理能力,屬于基礎(chǔ)題.12、A【解析】

設(shè)球心為O,三棱柱的上底面ΔA1B1C1的內(nèi)切圓的圓心為O1,該圓與邊B【詳解】如圖,設(shè)三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設(shè)球心為O,則由球的幾何知識(shí)得ΔOO1M所以O(shè)M=2即球O的半徑為25所以球O的體積為43故選A.【點(diǎn)睛】本題考查與球有關(guān)的組合體的問(wèn)題,解答本題的關(guān)鍵有兩個(gè):(1)構(gòu)造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內(nèi)求出球的半徑,這是解決與球有關(guān)的問(wèn)題時(shí)常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內(nèi)切圓的半徑r=a+b-c二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

作出可行域,由得,平移直線,數(shù)形結(jié)合可求的最大值.【詳解】作出可行域如圖所示由得,則是直線在軸上的截距.平移直線,當(dāng)直線經(jīng)過(guò)可行域內(nèi)的點(diǎn)時(shí),最小,此時(shí)最大.解方程組,得,..故答案為:.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,屬于基礎(chǔ)題.14、【解析】

利用即可建立關(guān)于的方程.【詳解】設(shè)雙曲線右焦點(diǎn)為,過(guò)右焦點(diǎn)且與軸垂直的直線與兩條漸近線分別交于兩點(diǎn),則,,由已知,,即,所以,離心率.故答案為:【點(diǎn)睛】本題考查求雙曲線的離心率,做此類題的關(guān)鍵是建立的方程或不等式,是一道容易題.15、【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程寫出雙曲線的漸近線方程,結(jié)合題意可求得正實(shí)數(shù)的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,,解得.故答案為:.【點(diǎn)睛】本題考查利用雙曲線的漸近線方程求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】

易知,設(shè),,利用絕對(duì)值不等式的性質(zhì)即可得解.【詳解】,設(shè),,令,當(dāng)時(shí),,所以單調(diào)遞減令,當(dāng)時(shí),,所以單調(diào)遞增所以當(dāng)時(shí),,,則則,即故答案為:.【點(diǎn)睛】本題考查函數(shù)最值的求法,考查絕對(duì)值不等式的性質(zhì),考查轉(zhuǎn)化思想及邏輯推理能力,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2).【解析】

(1)令求出的值,然后由,得出,然后檢驗(yàn)是否符合在時(shí)的表達(dá)式,即可得出數(shù)列的通項(xiàng)公式,并設(shè)數(shù)列的公比為,根據(jù)題意列出和的方程組,解出這兩個(gè)量,然后利用等比數(shù)列的通項(xiàng)公式可求出;(2)求出數(shù)列的前項(xiàng)和,然后利用分組求和法可求出.【詳解】(1)當(dāng)時(shí),,當(dāng)時(shí),.也適合上式,所以,.設(shè)數(shù)列的公比為,則,由,兩式相除得,,解得,,;(2)設(shè)數(shù)列的前項(xiàng)和為,則,.【點(diǎn)睛】本題考查利用求,同時(shí)也考查了等比數(shù)列通項(xiàng)的計(jì)算,以及分組求和法的應(yīng)用,考查計(jì)算能力,屬于中等題.18、(1)的普通方程為.的直角坐標(biāo)方程為(2)(-1,0)或(2,3)【解析】

(1)對(duì)直線的參數(shù)方程消參數(shù)即可求得直線的普通方程,對(duì)整理并兩邊乘以,結(jié)合,即可求得曲線的直角坐標(biāo)方程。(2)由(1)得:曲線C是以Q(1,1)為圓心,為半徑的圓,設(shè)點(diǎn)P的坐標(biāo)為,由題可得:,利用兩點(diǎn)距離公式列方程即可求解。【詳解】解:(1)由消去參數(shù),得.即直線的普通方程為.因?yàn)橛郑嗲€的直角坐標(biāo)方程為(2)由知,曲線C是以Q(1,1)為圓心,為半徑的圓設(shè)點(diǎn)P的坐標(biāo)為,則點(diǎn)P到上的點(diǎn)的最短距離為|PQ|即,整理得,解得所以點(diǎn)P的坐標(biāo)為(-1,0)或(2,3)【點(diǎn)睛】本題主要考查了參數(shù)方程化為普通方程及極坐標(biāo)方程化為直角坐標(biāo)方程,還考查了轉(zhuǎn)化思想及兩點(diǎn)距離公式,考查了方程思想及計(jì)算能力,屬于中檔題。19、(Ⅰ)見(jiàn)解析(Ⅱ).【解析】

(I)取的中點(diǎn),連接,通過(guò)證明平面得出;(II)以為原點(diǎn)建立坐標(biāo)系,求出平面的法向量,通過(guò)計(jì)算與的夾角得出與平面所成角.【詳解】(I)證明:取AC的中點(diǎn)M,連接PM,BM,∵AB=BC,PA=PC,∴AC⊥BM,AC⊥PM,又BM∩PM=M,∴AC⊥平面PBM,∵BP?平面PBM,∴AC⊥BP.(II)解:∵底面ABCD是梯形.BC∥AD,AB=BC=CD=1,AD=2,∴∠ABC=120°,∵AB=BC=1,∴AC,BM,∴AC⊥CD,又AC⊥BM,∴BM∥CD.∵PA=PC,CM,∴PM,∵PB,∴cos∠BMP,∴∠PMB=120°,以M為原點(diǎn),以MB,MC的方向?yàn)閤軸,y軸的正方向,以平面ABCD在M處的垂線為z軸建立坐標(biāo)系M﹣xyz,如圖所示:則A(0,,0),C(0,,0),P(,0,),D(﹣1,,0),∴(﹣1,,0),(0,,0),(,,),設(shè)平面ACP的法向量為(x,y,z),則,即,令x得(,0,1),∴cos,,∴直線AD與平面APC所成角的正弦值為|cos,|.【點(diǎn)睛】本題考查異面直線垂直的證明,考查直線與平面所成角的正弦值的求法,解題時(shí)要認(rèn)真審題,注意向量法的合理使用,難度一般.20、(Ⅰ)(II)【解析】

(I)聯(lián)立直線與橢圓的方程,根據(jù)判別式等于0,即可求出結(jié)果;(Ⅱ)因點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,可得的面積是的面積的兩倍,再由當(dāng)時(shí),的面積取到最大值,可得,進(jìn)而可得原點(diǎn)到直線的距離,再由點(diǎn)到直線的距離公式,以及(I)的結(jié)果,即可求解.【詳解】(I)由,得,則化簡(jiǎn)整理,得;(Ⅱ)因點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,故的面積是的面積的兩倍.所以當(dāng)時(shí),的面積取到最大值,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論