2024屆四川省仁壽縣青神中學高三下學期一模考試數(shù)學試題含解析_第1頁
2024屆四川省仁壽縣青神中學高三下學期一??荚嚁?shù)學試題含解析_第2頁
2024屆四川省仁壽縣青神中學高三下學期一模考試數(shù)學試題含解析_第3頁
2024屆四川省仁壽縣青神中學高三下學期一??荚嚁?shù)學試題含解析_第4頁
2024屆四川省仁壽縣青神中學高三下學期一模考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆四川省仁壽縣青神中學高三下學期一??荚嚁?shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.72.已知集合,則()A. B. C. D.3.費馬素數(shù)是法國大數(shù)學家費馬命名的,形如的素數(shù)(如:)為費馬索數(shù),在不超過30的正偶數(shù)中隨機選取一數(shù),則它能表示為兩個不同費馬素數(shù)的和的概率是()A. B. C. D.4.洛書,古稱龜書,是陰陽五行術數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結構是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點為陰數(shù).如圖,若從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),則其和等于11的概率是().A. B. C. D.5.下圖是來自古希臘數(shù)學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.6.記為等差數(shù)列的前項和.若,,則()A.5 B.3 C.-12 D.-137.拋物線的焦點為,則經(jīng)過點與點且與拋物線的準線相切的圓的個數(shù)有()A.1個 B.2個 C.0個 D.無數(shù)個8.已知直線:與圓:交于,兩點,與平行的直線與圓交于,兩點,且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號有()A.①② B.①④ C.②③ D.①②④9.已知函數(shù),為圖象的對稱中心,若圖象上相鄰兩個極值點,滿足,則下列區(qū)間中存在極值點的是()A. B. C. D.10.已知,,,,.若實數(shù),滿足不等式組,則目標函數(shù)()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值11.設,則()A. B. C. D.12.設,分別為雙曲線(a>0,b>0)的左、右焦點,過點作圓的切線與雙曲線的左支交于點P,若,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知、為正實數(shù),直線截圓所得的弦長為,則的最小值為__________.14.為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據(jù)實驗表明,該藥物釋放量與時間的函數(shù)關系為(如圖所示),實驗表明,當藥物釋放量對人體無害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經(jīng)過______分鐘人方可進入房間.15.關于函數(shù)有下列四個命題:①函數(shù)在上是增函數(shù);②函數(shù)的圖象關于中心對稱;③不存在斜率小于且與函數(shù)的圖象相切的直線;④函數(shù)的導函數(shù)不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)16.已知向量,,且,則實數(shù)m的值是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若函數(shù)在上單調遞減,且函數(shù)在上單調遞增,求實數(shù)的值;(2)求證:(,且).18.(12分)團購已成為時下商家和顧客均非常青睞的一種省錢、高校的消費方式,不少商家同時加入多家團購網(wǎng).現(xiàn)恰有三個團購網(wǎng)站在市開展了團購業(yè)務,市某調查公司為調查這三家團購網(wǎng)站在本市的開展情況,從本市已加入了團購網(wǎng)站的商家中隨機地抽取了50家進行調查,他們加入這三家團購網(wǎng)站的情況如下圖所示.(1)從所調查的50家商家中任選兩家,求他們加入團購網(wǎng)站的數(shù)量不相等的概率;(2)從所調查的50家商家中任取兩家,用表示這兩家商家參加的團購網(wǎng)站數(shù)量之差的絕對值,求隨機變量的分布列和數(shù)學期望;(3)將頻率視為概率,現(xiàn)從市隨機抽取3家已加入團購網(wǎng)站的商家,記其中恰好加入了兩個團購網(wǎng)站的商家數(shù)為,試求事件“”的概率.19.(12分)已知函數(shù)f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范圍;(Ⅱ)若a<0,對?x,y∈-∞,a,都有不等式f(x)≤(y+2020)+20.(12分)數(shù)列滿足,是與的等差中項.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.21.(12分)如圖,在四邊形中,,,.(1)求的長;(2)若的面積為6,求的值.22.(10分)已知矩陣的一個特征值為4,求矩陣A的逆矩陣.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)程序框圖程序運算即可得.【詳解】依程序運算可得:,故選:C【點睛】本題主要考查了程序框圖的計算,解題的關鍵是理解程序框圖運行的過程.2、B【解析】

計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.3、B【解析】

基本事件總數(shù),能表示為兩個不同費馬素數(shù)的和只有,,,共有個,根據(jù)古典概型求出概率.【詳解】在不超過的正偶數(shù)中隨機選取一數(shù),基本事件總數(shù)能表示為兩個不同費馬素數(shù)的和的只有,,,共有個則它能表示為兩個不同費馬素數(shù)的和的概率是本題正確選項:【點睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎題.4、A【解析】

基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率.【詳解】解:從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個,其和等于的概率.故選:.【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,屬于基礎題.5、D【解析】

根據(jù)以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進而求得所求表達式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點睛】本小題主要考查同角三角函數(shù)的基本關系式,考查二倍角公式,屬于基礎題.6、B【解析】

由題得,,解得,,計算可得.【詳解】,,,,解得,,.故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,前項和公式,考查了學生運算求解能力.7、B【解析】

圓心在的中垂線上,經(jīng)過點,且與相切的圓的圓心到準線的距離與到焦點的距離相等,圓心在拋物線上,直線與拋物線交于2個點,得到2個圓.【詳解】因為點在拋物線上,又焦點,,由拋物線的定義知,過點、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點,這樣的交點共有2個,故過點、且與相切的圓的不同情況種數(shù)是2種.故選:.【點睛】本題主要考查拋物線的簡單性質,本題解題的關鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.8、D【解析】

求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時滿足條件,根據(jù)點到直線距離可知,①②④滿足條件.故選:D.【點睛】本題考查直線與圓的位置關系的應用,涉及點到直線的距離公式.9、A【解析】

結合已知可知,可求,進而可求,代入,結合,可求,即可判斷.【詳解】圖象上相鄰兩個極值點,滿足,即,,,且,,,,,,當時,為函數(shù)的一個極小值點,而.故選:.【點睛】本題主要考查了正弦函數(shù)的圖象及性質的簡單應用,解題的關鍵是性質的靈活應用.10、B【解析】

判斷直線與縱軸交點的位置,畫出可行解域,即可判斷出目標函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標函數(shù)一定有最大值和最小值.故選:B【點睛】本題考查了目標函數(shù)最值是否存在問題,考查了數(shù)形結合思想,考查了不等式的性質應用.11、C【解析】試題分析:,.故C正確.考點:復合函數(shù)求值.12、C【解析】

設過點作圓的切線的切點為,根據(jù)切線的性質可得,且,再由和雙曲線的定義可得,得出為中點,則有,得到,即可求解.【詳解】設過點作圓的切線的切點為,,所以是中點,,,.故選:C.【點睛】本題考查雙曲線的性質、雙曲線定義、圓的切線性質,意在考查直觀想象、邏輯推理和數(shù)學計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先根據(jù)弦長,半徑,弦心距之間的關系列式求得,代入整理得,利用基本不等式求得最值.【詳解】解:圓的圓心為,則到直線的距離為,由直線截圓所得的弦長為可得,整理得,解得或(舍去),令,又,當且僅當時,等號成立,則.故答案為:.【點睛】本題考查直線和圓的位置關系,考核基本不等式求最值,關鍵是對目標式進行變形,變成能用基本不等式求最值的形式,也可用換元法進行變形,是中檔題.14、240【解析】

(1)由時,,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當時,,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經(jīng)過分鐘人方可進入房間.故答案為:(1)2;(2)40【點睛】本題主要考查了分段函數(shù)的應用,屬于中檔題.15、①②③【解析】

由單調性、對稱性概念、導數(shù)的幾何意義、導數(shù)與極值的關系進行判斷.【詳解】函數(shù)的定義域是,由于,在上遞增,∴函數(shù)在上是遞增,①正確;,∴函數(shù)的圖象關于中心對稱,②正確;,時取等號,∴③正確;,設,則,顯然是即的極小值點,④錯誤.故答案為:①②③.【點睛】本題考查函數(shù)的單調性、對稱性,考查導數(shù)的幾何意義、導數(shù)與極值,解題時按照相關概念判斷即可,屬于中檔題.16、1【解析】

根據(jù)即可得出,從而求出m的值.【詳解】解:∵;∴;∴m=1.故答案為:1.【點睛】本題考查向量垂直的充要條件,向量數(shù)量積的坐標運算.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)1;(2)見解析【解析】

(1)分別求得與的導函數(shù),由導函數(shù)與單調性關系即可求得的值;(2)由(1)可知當時,,當時,,因而,構造,由對數(shù)運算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數(shù)在上單調遞減,∴,即在上恒成立,∴,又∵函數(shù)在上單調遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當時,函數(shù)在上為減函數(shù),在上為增函數(shù),而,∴當時,,當時,.∴∴即,∴.【點睛】本題考查了導數(shù)與函數(shù)單調性關系,放縮法在證明不等式中的應用,屬于難題.18、(1);(2)從而的分布列為012;(3).【解析】

(1)運用概率的計算公式求概率分布,再運用數(shù)學期望公式進行求解;(2)借助題設條件運用貝努力公式進行分析求解:(1)記所選取額兩家商家加入團購網(wǎng)站的數(shù)量相等為事件,則,所以他們加入團購網(wǎng)站的數(shù)量不相等的概率為.(2)由題,知的可能取值分別為0,1,2,,,從而的分布列為012.(3)所調查的50家商家中加入了兩個團購網(wǎng)站的商家有25家,將頻率視為概率,則從市中任取一家加入團購網(wǎng)站的商家,他同時加入了兩個團購網(wǎng)站的概率為,所以,所以事件“”的概率為.19、(Ⅰ)(-∞,-1)∪(1,+∞);(Ⅱ)-1010,0.【解析】

(Ⅰ)由題意不等式化為|1-2a|-|1-a|>1,利用分類討論法去掉絕對值求出不等式的解集即可;(Ⅱ)由題意把問題轉化為[f(x)]max≤[|y+2020|+|y-a|]min,分別求出【詳解】(Ⅰ)由題意知,f(1)=|1-2a|-|1-a|>1,若a≤12,則不等式化為1-2a-1+a>1,解得若12<a<1,則不等式化為2a-1-(1-a)>1,解得若a≥1,則不等式化為2a-1+1-a>1,解得a>1,綜上所述,a的取值范圍是(-∞,-1)∪(1,+∞);(Ⅱ)由題意知,要使得不等式f(x)≤|(y+2020)|+|y-a|恒成立,只需[f(x)]max當x∈(-∞,a]時,|x-2a|-|x-a|≤-a,[f(x)]max因為|y+2020|+|y-a|≥|a+2020|,所以當(y+2020)(y-a)≤0時,[|y+2020|+|y-a|]min即-a≤|a+2020|,解得a≥-1010,結合a<0,所以a的取值范圍是[-1010,0).【點睛】本題考查了絕對值不等式的求解問題,含有絕對值的不等式恒成立應用問題,以及絕對值三角不等式的應用,考查了分類討論思想,是中檔題.含有絕對值的不等式恒成立應用問題,關鍵是等價轉化為最值問題,再通過絕對值三角不等式求解最值,從而建立不等關系,求出參數(shù)范圍.20、(1)見解析,(2)【解析】

(1)根據(jù)等差中項的定義得,然后構造新等比數(shù)列,寫出的通項即可求(2)根據(jù)(1)的結果,分組求和即可【詳解】解:(1)由已知可得,即,可化為,故數(shù)列是以為首項,2為公比的等比數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論