靜態(tài)電磁場及其邊值問題的解_第1頁
靜態(tài)電磁場及其邊值問題的解_第2頁
靜態(tài)電磁場及其邊值問題的解_第3頁
靜態(tài)電磁場及其邊值問題的解_第4頁
靜態(tài)電磁場及其邊值問題的解_第5頁
已閱讀5頁,還剩131頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

靜態(tài)電磁場及其邊值問題的解本章內(nèi)容

3.1

靜電場分析3.2

導(dǎo)電媒質(zhì)中的恒定電場分析3.3

恒定磁場分析3.4

靜態(tài)場的邊值問題及解的惟一性定理3.5

鏡像法3.6

分離變量法靜態(tài)電磁場:場量不隨時間變化,包括:

靜電場、恒定電場和恒定磁場時變情況下,電場和磁場相互關(guān)聯(lián),構(gòu)成統(tǒng)一的電磁場靜態(tài)情況下,電場和磁場由各自的源激發(fā),且相互獨立

第2頁,共136頁,2024年2月25日,星期天3.1靜電場分析

本節(jié)內(nèi)容3.1.1

靜電場的基本方程和邊界條件

3.1.2

電位函數(shù)3.1.3

導(dǎo)體系統(tǒng)的電容與部分電容3.1.4

靜電場的能量3.1.5

靜電力第3頁,共136頁,2024年2月25日,星期天2.邊界條件微分形式:本構(gòu)關(guān)系:1.基本方程積分形式:或或3.1.1靜電場的基本方程和邊界條件若分界面上不存在面電荷,即,則第4頁,共136頁,2024年2月25日,星期天介質(zhì)2介質(zhì)1

在靜電平衡的情況下,導(dǎo)體內(nèi)部的電場為0,則導(dǎo)體表面的邊界條件為

場矢量的折射關(guān)系

導(dǎo)體表面的邊界條件第5頁,共136頁,2024年2月25日,星期天由即靜電場可以用一個標量函數(shù)的梯度來表示,標量函數(shù)稱為靜電場的標量電位或簡稱電位。1.電位函數(shù)的定義3.1.2電位函數(shù)第6頁,共136頁,2024年2月25日,星期天2.電位的表達式對于連續(xù)的體分布電荷,由同理得,面電荷的電位:故得點電荷的電位:線電荷的電位:第7頁,共136頁,2024年2月25日,星期天3.電位差兩端點乘,則有將上式兩邊從點P到點Q沿任意路徑進行積分,得關(guān)于電位差的說明

P、Q兩點間的電位差等于電場力將單位正電荷從P點移至Q點所做的功,電場力使單位正電荷由高電位處移到低電位處。電位差也稱為電壓,可用U表示。電位差有確定值,只與首尾兩點位置有關(guān),與積分路徑無關(guān)。P、Q兩點間的電位差電場力做的功第8頁,共136頁,2024年2月25日,星期天靜電位不惟一,可以相差一個常數(shù),即選參考點令參考點電位為零電位確定值(電位差)兩點間電位差有定值

選擇電位參考點的原則

應(yīng)使電位表達式有意義。應(yīng)使電位表達式最簡單。若電荷分布在有限區(qū)域,通常取無限遠作電位參考點。同一個問題只能有一個參考點。4.電位參考點

為使空間各點電位具有確定值,可以選定空間某一點作為參考點,且令參考點的電位為零,由于空間各點與參考點的電位差為確定值,所以該點的電位也就具有確定值,即第9頁,共136頁,2024年2月25日,星期天

例3.1.1

求電偶極子的電位.

在球坐標系中用二項式展開,由于,得代入上式,得

表示電偶極矩,方向由負電荷指向正電荷。+q電偶極子zod-q第10頁,共136頁,2024年2月25日,星期天將和代入上式,解得E線方程為

由球坐標系中的梯度公式,可得到電偶極子的遠區(qū)電場強度等位線電場線電偶極子的場圖

電場線微分方程:

等位線方程:第11頁,共136頁,2024年2月25日,星期天

解選定均勻電場空間中的一點O為坐標原點,而任意點P

的位置矢量為r,則若選擇點O為電位參考點,即,則在球坐標系中,取極軸與的方向一致,即,則有在圓柱坐標系中,取與x軸方向一致,即,而,故

例3.1.2

求均勻電場的電位分布。第12頁,共136頁,2024年2月25日,星期天xyzL-L解

采用圓柱坐標系,令線電荷與z

軸相重合,中點位于坐標原點。由于軸對稱性,電位與

無關(guān)。在帶電線上位于處的線元,它到點的距離,則

例3.1.3

求長度為2L、電荷線密度為的均勻帶電線的電位。第13頁,共136頁,2024年2月25日,星期天在上式中若令,則可得到無限長直線電荷的電位。當時,上式可寫為當時,上式變?yōu)闊o窮大,這是因為電荷不是分布在有限區(qū)域內(nèi),而將電位參考點選在無窮遠點之故。這時可在上式中加上一個任意常數(shù),則有并選擇有限遠處為電位參考點。例如,選擇ρ=a

的點為電位參考點,則有第14頁,共136頁,2024年2月25日,星期天在均勻介質(zhì)中,有5.電位的微分方程在無源區(qū)域,標量泊松方程拉普拉斯方程第15頁,共136頁,2024年2月25日,星期天6.靜電位的邊界條件

設(shè)P1和P2是介質(zhì)分界面兩側(cè)緊貼界面的相鄰兩點,其電位分別為

1和

2。當兩點間距離Δl→0時導(dǎo)體表面上電位的邊界條件:由和媒質(zhì)2媒質(zhì)1若介質(zhì)分界面上無自由電荷,即常數(shù),第16頁,共136頁,2024年2月25日,星期天

例3.1.4兩塊無限大接地導(dǎo)體平板分別置于x=0和x=a處,在兩板之間的x=b處有一面密度為

的均勻電荷分布,如圖所示。求兩導(dǎo)體平板之間的電位和電場。

解在兩塊無限大接地導(dǎo)體平板之間,除x=b處有均勻面電荷分布外,其余空間均無電荷分布,故電位函數(shù)滿足一維拉普拉斯方程方程的解為obaxy兩塊無限大平行板第17頁,共136頁,2024年2月25日,星期天利用邊界條件,有處,最后得處,處,所以由此解得第18頁,共136頁,2024年2月25日,星期天電容器廣泛應(yīng)用于電子設(shè)備的電路中:

3.1.3導(dǎo)體系統(tǒng)的電容與部分電容在電子電路中,利用電容器來實現(xiàn)濾波、移相、隔直、旁路、選頻等作用。通過電容、電感、電阻的排布,可組合成各種功能的復(fù)雜電路。在電力系統(tǒng)中,可利用電容器來改善系統(tǒng)的功率因數(shù),以減少電能的損失和提高電氣設(shè)備的利用率。第19頁,共136頁,2024年2月25日,星期天電容是導(dǎo)體系統(tǒng)的一種基本屬性,是描述導(dǎo)體系統(tǒng)儲存電荷能力的物理量。孤立導(dǎo)體的電容定義為所帶電量q與其電位

的比值,即1.電容孤立導(dǎo)體的電容兩個帶等量異號電荷(

q)的導(dǎo)體組成的電容器,其電容為電容的大小只與導(dǎo)體系統(tǒng)的幾何尺寸、形狀和及周圍電介質(zhì)的特性參數(shù)有關(guān),而與導(dǎo)體的帶電量和電位無關(guān)。第20頁,共136頁,2024年2月25日,星期天(1)假定兩導(dǎo)體上分別帶電荷+q和-q;

計算電容的方法一:(4)求比值,即得出所求電容。(3)由 ,求出兩導(dǎo)體間的電位差;(2)計算兩導(dǎo)體間的電場強度E;

計算電容的方法二:(1)假定兩電極間的電位差為U;(4)由得到

;(2)計算兩電極間的電位分布

;(3)由得到E;

(5)由 ,求出導(dǎo)體的電荷q;(6)求比值,即得出所求電容。第21頁,共136頁,2024年2月25日,星期天

解:設(shè)內(nèi)導(dǎo)體的電荷為q

,則由高斯定理可求得內(nèi)外導(dǎo)體間的電場同心導(dǎo)體間的電壓球形電容器的電容當時,

例3.1.4同心球形電容器的內(nèi)導(dǎo)體半徑為a、外導(dǎo)體半徑為b,其間填充介電常數(shù)為ε的均勻介質(zhì)。求此球形電容器的電容。孤立導(dǎo)體球的電容第22頁,共136頁,2024年2月25日,星期天

例3.1.5如圖所示的平行雙線傳輸線,導(dǎo)線半徑為a,兩導(dǎo)線的軸線距離為D,且D>>a,求傳輸線單位長度的電容。

設(shè)兩導(dǎo)線單位長度帶電量分別為和。由于,故可近似地認為電荷分別均勻分布在兩導(dǎo)線的表面上。應(yīng)用高斯定理和疊加原理,可得到兩導(dǎo)線之間的平面上任一點P的電場強度為兩導(dǎo)線間的電位差故單位長度的電容為第23頁,共136頁,2024年2月25日,星期天

例3.1.6同軸線內(nèi)導(dǎo)體半徑為a,外導(dǎo)體半徑為b,內(nèi)外導(dǎo)體間填充的介電常數(shù)為

的均勻介質(zhì),求同軸線單位長度的電容。內(nèi)外導(dǎo)體間的電位差

設(shè)同軸線的內(nèi)、外導(dǎo)體單位長度帶電量分別為和,應(yīng)用高斯定理可得到內(nèi)外導(dǎo)體間任一點的電場強度為故得同軸線單位長度的電容為同軸線第24頁,共136頁,2024年2月25日,星期天*2.部份電容

在多導(dǎo)體系統(tǒng)中,任何兩個導(dǎo)體間的電壓都要受到其余導(dǎo)體上的電荷的影響。因此,研究多導(dǎo)體系統(tǒng)時,必須把電容的概念加以推廣,引入部分電容的概念。

在由N個導(dǎo)體組成的系統(tǒng)中,由于電位與各導(dǎo)體所帶的電荷之間成線性關(guān)系,所以,各導(dǎo)體的電位為式中:——自電位系數(shù)——互電位系數(shù)(1)電位系數(shù)第25頁,共136頁,2024年2月25日,星期天

αij在數(shù)值上等于第i個導(dǎo)體上的總電量為一個單位、而其余導(dǎo)體上的總電量都為零時,第j個導(dǎo)體上的電位,即

αij只與各導(dǎo)體的形狀、尺寸、相互位置以及導(dǎo)體周圍的介質(zhì)參數(shù)有關(guān),而與各導(dǎo)體的電位和帶電量無關(guān);

具有對稱性,即αij=αji。

αij>

0;

電位系數(shù)的特點:第26頁,共136頁,2024年2月25日,星期天若已知各導(dǎo)體的電位,則各導(dǎo)體的電量可表示為

式中:——自電容系數(shù)或自感應(yīng)系數(shù)

——互電容系數(shù)或互感應(yīng)系數(shù)

(2)電容系數(shù)第27頁,共136頁,2024年2月25日,星期天

βij在數(shù)值上等于第j個導(dǎo)體上的電位為一個單位、而其余導(dǎo)體接地時,第i個導(dǎo)體上的電量,即

βij只與各導(dǎo)體的形狀、尺寸、相互位置以及導(dǎo)體周圍的介質(zhì)參數(shù)有關(guān),而與各導(dǎo)體的電位和帶電量無關(guān);

具有對稱性,即βij=βji。

βii>

0、;

電容系數(shù)的特點:第28頁,共136頁,2024年2月25日,星期天將各導(dǎo)體的電量表示為

式中:(3)部分電容——導(dǎo)體i與導(dǎo)體j之間的部分電容——導(dǎo)體i與地之間的部分電容

第29頁,共136頁,2024年2月25日,星期天Cii在數(shù)值上等于全部導(dǎo)體的電位都為一個單位時,第i個導(dǎo)體上的電量;

Cij只與各導(dǎo)體的形狀、尺寸、相互位置以及導(dǎo)體周圍的介質(zhì)參數(shù)有關(guān),而與各導(dǎo)體的電位和帶電量無關(guān);

具有對稱性,即Cij=Cji。

Cij>

0;Cij在數(shù)值上等于第j個導(dǎo)體的電位為一個單位、其余導(dǎo)體都接地時,第i個導(dǎo)體上的電量;

部分電容的特點:第30頁,共136頁,2024年2月25日,星期天在多導(dǎo)體系統(tǒng)中,把其中任意兩個導(dǎo)體作為電容器的兩個電極,設(shè)在這兩個電極間加上電壓U,極板上所帶電荷分別為,則比值稱為這兩個導(dǎo)體間的等效電容。(4)等效電容如圖所示,有三個部分電容導(dǎo)線1和2間的等效電容為導(dǎo)線1和大地間的等效電容為導(dǎo)線2和大地間的等效電容為12大地大地上空的平行雙導(dǎo)線第31頁,共136頁,2024年2月25日,星期天

如果充電過程進行得足夠緩慢,就不會有能量輻射,充電過程中外加電源所做的總功將全部轉(zhuǎn)換成電場能量,或者說電場能量就等于外加電源在此電場建立過程中所做的總功。

靜電場能量來源于建立電荷系統(tǒng)的過程中外源提供的能量。

靜電場最基本的特征是對電荷有作用力,這表明靜電場具有能量。任何形式的帶電系統(tǒng),都要經(jīng)過從沒有電荷分布到某個最終電荷分布的建立(或充電)過程。在此過程中,外加電源必須克服電荷之間的相互作用力而做功。3.1.4靜電場的能量

第32頁,共136頁,2024年2月25日,星期天1.靜電場的能量

設(shè)系統(tǒng)從零開始充電,最終帶電量為q、電位為

。充電過程中某一時刻的電荷量為αq、電位為α

。(0≤α≤1)當α增加為(α+dα)時,外電源做功為:α

(qdα)。對α從0到1積分,即得到外電源所做的總功為根據(jù)能量守恒定律,此功也就是電量為q的帶電體具有的電場能量We

,即

對于電荷體密度為ρ的體分布電荷,體積元dV中的電荷ρdV具有的電場能量為第33頁,共136頁,2024年2月25日,星期天故體分布電荷的電場能量為對于面分布電荷,電場能量為對于多導(dǎo)體組成的帶電系統(tǒng),則有——第i個導(dǎo)體所帶的電荷——第i個導(dǎo)體的電位式中:第34頁,共136頁,2024年2月25日,星期天2.電場能量密度

從場的觀點來看,靜電場的能量分布于電場所在的整個空間。

電場能量密度:

電場的總能量:積分區(qū)域為電場所在的整個空間

對于線性、各向同性介質(zhì),則有第35頁,共136頁,2024年2月25日,星期天由于體積V外的電荷密度ρ=0,若將上式中的積分區(qū)域擴大到整個場空間,結(jié)果仍然成立。只要電荷分布在有限區(qū)域內(nèi),當閉合面S無限擴大時,則有故

推證:ρρ=0S第36頁,共136頁,2024年2月25日,星期天

例3.1.7

半徑為a的球形空間內(nèi)均勻分布有電荷體密度為ρ的電荷,試求靜電場能量。

解:方法一,利用計算根據(jù)高斯定理求得電場強度故第37頁,共136頁,2024年2月25日,星期天

方法二:利用計算先求出電位分布故第38頁,共136頁,2024年2月25日,星期天3.2導(dǎo)電媒質(zhì)中的恒定電場分析

本節(jié)內(nèi)容3.2.1恒定電場的基本方程和邊界條件3.2.2恒定電場與靜電場的比擬3.2.3漏電導(dǎo)第39頁,共136頁,2024年2月25日,星期天

由J=E可知,導(dǎo)體中若存在恒定電流,則必有維持該電流的電場,雖然導(dǎo)體中產(chǎn)生電場的電荷作定向運動,但導(dǎo)體中的電荷分布是一種不隨時間變化的恒定分布,這種恒定分布電荷產(chǎn)生的電場稱為恒定電場。恒定電場與靜電場的重要區(qū)別:(1)恒定電場可以存在于導(dǎo)體內(nèi)部。(2)恒定電場中有電場能量的損耗,要維持導(dǎo)體中的恒定電流,就必須有外加電源來不斷補充被損耗的電場能量。

恒定電場和靜電場都是有源無旋場,具有相同的性質(zhì)。3.2.1恒定電場的基本方程和邊界條件第40頁,共136頁,2024年2月25日,星期天1.基本方程

恒定電場的基本方程為微分形式:積分形式:

恒定電場的基本場矢量是電流密度和電場強度線性各向同性導(dǎo)電媒質(zhì)的本構(gòu)關(guān)系

恒定電場的電位函數(shù)由若媒質(zhì)是均勻的,則均勻?qū)щ娒劫|(zhì)中沒有體分布電荷第41頁,共136頁,2024年2月25日,星期天2.恒定電場的邊界條件媒質(zhì)2媒質(zhì)1場矢量的邊界條件即即導(dǎo)電媒質(zhì)分界面上的電荷面密度場矢量的折射關(guān)系第42頁,共136頁,2024年2月25日,星期天電位的邊界條件恒定電場同時存在于導(dǎo)體內(nèi)部和外部,在導(dǎo)體表面上的電場既有法向分量又有切向分量,電場并不垂直于導(dǎo)體表面,因而導(dǎo)體表面不是等位面;

說明:第43頁,共136頁,2024年2月25日,星期天媒質(zhì)2媒質(zhì)1媒質(zhì)2媒質(zhì)1如

2>>

1、且

2≠90°,則

1=0,即電場線近似垂直于與良導(dǎo)體表面。此時,良導(dǎo)體表面可近似地看作為等位面;

若媒質(zhì)1為理想介質(zhì),即

1=0,則J1=0,故J2n=0且E2n=0,即導(dǎo)體中的電流和電場與分界面平行。第44頁,共136頁,2024年2月25日,星期天3.2.2恒定電場與靜電場的比擬

如果兩種場,在一定條件下,場方程有相同的形式,邊界形狀相同,邊界條件等效,則其解也必有相同的形式,求解這兩種場分布必然是同一個數(shù)學(xué)問題。只需求出一種場的解,就可以用對應(yīng)的物理量作替換而得到另一種場的解。這種求解場的方法稱為比擬法。靜電場恒定電場第45頁,共136頁,2024年2月25日,星期天恒定電場與靜電場的比擬基本方程靜電場(區(qū)域)本構(gòu)關(guān)系位函數(shù)邊界條件恒定電場(電源外)對應(yīng)物理量靜電場恒定電場第46頁,共136頁,2024年2月25日,星期天

例3.2.1一個有兩層介質(zhì)的平行板電容器,其參數(shù)分別為

1、

1和

2、

2,外加電壓U。求介質(zhì)面上的自由電荷密度。

解:極板是理想導(dǎo)體,為等位面,電流沿z方向。第47頁,共136頁,2024年2月25日,星期天

例3.2.2

填充有兩層介質(zhì)的同軸電纜,內(nèi)導(dǎo)體半徑為a,外導(dǎo)體半徑為c,介質(zhì)的分界面半徑為b。兩層介質(zhì)的介電常數(shù)為

1和

2

、電導(dǎo)率為

1和

2

。設(shè)內(nèi)導(dǎo)體的電壓為U0,外導(dǎo)體接地。求:(1)兩導(dǎo)體之間的電流密度和電場強度分布;(2)介質(zhì)分界面上的自由電荷面密度。外導(dǎo)體內(nèi)導(dǎo)體介質(zhì)2介質(zhì)1第48頁,共136頁,2024年2月25日,星期天

(1)設(shè)同軸電纜中單位長度的徑向電流為I,則由可得電流密度介質(zhì)中的電場

解電流由內(nèi)導(dǎo)體流向外導(dǎo)體,在分界面上只有法向分量,所以電流密度成軸對稱分布??上燃僭O(shè)電流為I,由求出電流密度的表達式,然后求出和,再由確定出電流I。第49頁,共136頁,2024年2月25日,星期天故兩種介質(zhì)中的電流密度和電場強度分別為由于于是得到第50頁,共136頁,2024年2月25日,星期天(2)由可得,介質(zhì)1內(nèi)表面的電荷面密度為介質(zhì)2外表面的電荷面密度為兩種介質(zhì)分界面上的電荷面密度為第51頁,共136頁,2024年2月25日,星期天

工程上,常在電容器兩極板之間、同軸電纜的芯線與外殼之間,填充不導(dǎo)電的材料作電絕緣。這些絕緣材料的電導(dǎo)率遠遠小于金屬材料的電導(dǎo)率,但畢竟不為零,因而當在電極間加上電壓U時,必定會有微小的漏電流J存在。漏電流與電壓之比為漏電導(dǎo),即其倒數(shù)稱為絕緣電阻,即3.2.3漏電導(dǎo)第52頁,共136頁,2024年2月25日,星期天(1)假定兩電極間的電流為I;計算兩電極間的電流密度矢量J;由J=E

得到E

;由,求出兩導(dǎo)體間的電位差;(5)求比值,即得出所求電導(dǎo)。

計算電導(dǎo)的方法一:

計算電導(dǎo)的方法二:(1)假定兩電極間的電位差為U;(2)計算兩電極間的電位分布

;(3)由得到E;(4)由J=E得到J;(5)由 ,求出兩導(dǎo)體間電流;(6)求比值,即得出所求電導(dǎo)。

計算電導(dǎo)的方法三:靜電比擬法:第53頁,共136頁,2024年2月25日,星期天例3.2.3求同軸電纜的絕緣電阻。設(shè)內(nèi)外的半徑分別為a、b,長度為l

,其間媒質(zhì)的電導(dǎo)率為σ、介電常數(shù)為ε。解:直接用恒定電場的計算方法電導(dǎo)絕緣電阻則設(shè)由內(nèi)導(dǎo)體流向外導(dǎo)體的電流為I

。第54頁,共136頁,2024年2月25日,星期天方程通解為

例3.2.4在一塊厚度為h

的導(dǎo)電板上,由兩個半徑為r1和r2的圓弧和夾角為

0的兩半徑割出的一段環(huán)形導(dǎo)電媒質(zhì),如圖所示。計算沿

方向的兩電極之間的電阻。設(shè)導(dǎo)電媒質(zhì)的電導(dǎo)率為σ。解:設(shè)在沿

方向的兩電極之間外加電壓U0,則電流沿

方向流動,而且電流密度是隨

變化的。但容易判定電位

只是變量

的函數(shù),因此電位函數(shù)

滿足一維拉普拉斯方程代入邊界條件可以得到環(huán)形導(dǎo)電媒質(zhì)塊r1hr2

0σ第55頁,共136頁,2024年2月25日,星期天電流密度兩電極之間的電流故沿

方向的兩電極之間的電阻為所以第56頁,共136頁,2024年2月25日,星期天本節(jié)內(nèi)容3.3.1恒定磁場的基本方程和邊界條件3.3.2

恒定磁場的矢量磁位和標量磁位3.3.3

電感3.3.4

恒定磁場的能量3.3.5

磁場力

3.3恒定磁場分析第57頁,共136頁,2024年2月25日,星期天微分形式:1.基本方程2.邊界條件本構(gòu)關(guān)系:或若分界面上不存在面電流,即JS=0,則積分形式:或3.3.1恒定磁場的基本方程和邊界條件第58頁,共136頁,2024年2月25日,星期天

矢量磁位的定義

磁矢位的任意性與電位一樣,磁矢位也不是惟一確定的,它加上任意一個標量

的梯度以后,仍然表示同一個磁場,即由即恒定磁場可以用一個矢量函數(shù)的旋度來表示。磁矢位的任意性是因為只規(guī)定了它的旋度,沒有規(guī)定其散度造成的。為了得到確定的A,可以對A的散度加以限制,在恒定磁場中通常規(guī)定,并稱為庫侖規(guī)范。1.恒定磁場的矢量磁位矢量磁位或稱磁矢位

3.3.2恒定磁場的矢量磁位和標量磁位第59頁,共136頁,2024年2月25日,星期天

磁矢位的微分方程在無源區(qū):矢量泊松方程矢量拉普拉斯方程

磁矢位的表達式第60頁,共136頁,2024年2月25日,星期天

磁矢位的邊界條件(可以證明滿足)對于面電流和細導(dǎo)線電流回路,磁矢位分別為

利用磁矢位計算磁通量:細線電流:面電流:由此可得出第61頁,共136頁,2024年2月25日,星期天

例3.3.1求小圓環(huán)電流回路的遠區(qū)矢量磁位與磁場。小圓形回路的半徑為a

,回路中的電流為I

解如圖所示,由于具有軸對稱性,矢量磁位和磁場均與

無關(guān),計算xOz平面上的矢量磁位與磁場將不失一般性。小圓環(huán)電流aIxzyrRθIPO第62頁,共136頁,2024年2月25日,星期天對于遠區(qū),有r>>a,所以由于在

=0面上,所以上式可寫成于是得到第63頁,共136頁,2024年2月25日,星期天式中S=πa

2是小圓環(huán)的面積。載流小圓環(huán)可看作磁偶極子,為磁偶極子的磁矩(或磁偶極矩),則或第64頁,共136頁,2024年2月25日,星期天

解:先求長度為2L的直線電流的磁矢位。電流元到點的距離。則

例3.3.2求無限長線電流I

的磁矢位,設(shè)電流沿+z方向流動。與計算無限長線電荷的電位一樣,令可得到無限長線電流的磁矢位xyzL-L第65頁,共136頁,2024年2月25日,星期天2.恒定磁場的標量磁位一般情況下,恒定磁場只能引入磁矢位來描述,但在無傳導(dǎo)電流(J=0)的空間中,則有即在無傳導(dǎo)電流(J=0)的空間中,可以引入一個標量位函數(shù)來描述磁場。

標量磁位的引入標量磁位或磁標位

磁標位的微分方程將代入——等效磁荷體密度第66頁,共136頁,2024年2月25日,星期天與靜電位相比較,有

標量磁位的邊界條件在線性、各向同性的均勻媒質(zhì)中

標量磁位的表達式和或和式中:——等效磁荷面密度第67頁,共136頁,2024年2月25日,星期天靜電位 磁標位

磁標位與靜電位的比較靜電位

0

P磁標位

m

0

m第68頁,共136頁,2024年2月25日,星期天當r>>l時,可將磁柱體等效成磁偶極子,則利用與靜電場的比較和電偶極子場,有

解:M0為常數(shù),

m=0,柱內(nèi)沒有磁荷。在柱的兩個端面上,磁化磁荷為R1R2rPzx-l/2l/2M

例3.3.3半徑為a、長為l的圓柱永磁體,沿軸向均勻磁化,其磁化強度為。求遠區(qū)的磁感應(yīng)強度。第69頁,共136頁,2024年2月25日,星期天1.磁通與磁鏈

3.3.3電感單匝線圈形成的回路的磁鏈定義為穿過該回路的磁通量多匝線圈形成的導(dǎo)線回路的磁鏈定義為所有線圈的磁通總和CI

細回路粗導(dǎo)線構(gòu)成的回路,磁鏈分為兩部分:一部分是粗導(dǎo)線包圍的、磁力線不穿過導(dǎo)體的外磁通量

o;另一部分是磁力線穿過導(dǎo)體、只有粗導(dǎo)線的一部分包圍的內(nèi)磁通量

i。

iCI

o粗回路第70頁,共136頁,2024年2月25日,星期天設(shè)回路C中的電流為I

,所產(chǎn)生的磁場與回路C交鏈的磁鏈為

,則磁鏈

與回路C中的電流I

有正比關(guān)系,其比值稱為回路C的自感系數(shù),簡稱自感?!庾愿?.自感——內(nèi)自感;粗導(dǎo)體回路的自感:L=Li+Lo自感只與回路的幾何形狀、尺寸以及周圍的磁介質(zhì)有關(guān),與電流無關(guān)。

自感的特點:第71頁,共136頁,2024年2月25日,星期天

解:先求內(nèi)導(dǎo)體的內(nèi)自感。設(shè)同軸線中的電流為I,由安培環(huán)路定理穿過沿軸線單位長度的矩形面積元dS=d

的磁通為

例3.3.4求同軸線單位長度的自感。設(shè)內(nèi)導(dǎo)體半徑為a,外導(dǎo)體厚度可忽略不計,其半徑為b,空氣填充。得與dΦi交鏈的電流為則與dΦi相應(yīng)的磁鏈為第72頁,共136頁,2024年2月25日,星期天因此內(nèi)導(dǎo)體中總的內(nèi)磁鏈為故單位長度的內(nèi)自感為再求內(nèi)、外導(dǎo)體間的外自感。則故單位長度的外自感為單位長度的總自感為第73頁,共136頁,2024年2月25日,星期天

例3.3.5計算平行雙線傳輸線單位長度的自感。設(shè)導(dǎo)線的半徑為a,兩導(dǎo)線的間距為D,且D>>a。導(dǎo)線及周圍媒質(zhì)的磁導(dǎo)率為μ0。穿過兩導(dǎo)線之間沿軸線方向為單位長度的面積的外磁鏈為

設(shè)兩導(dǎo)線流過的電流為I。由于D>>a,故可近似地認為導(dǎo)線中的電流是均勻分布的。應(yīng)用安培環(huán)路定理和疊加原理,可得到兩導(dǎo)線之間的平面上任一點P

的磁感應(yīng)強度為PII第74頁,共136頁,2024年2月25日,星期天于是得到平行雙線傳輸線單位長度的外自感兩根導(dǎo)線單位長度的內(nèi)自感為故得到平行雙線傳輸線單位長度的自感為第75頁,共136頁,2024年2月25日,星期天

對兩個彼此鄰近的閉合回路C1和回路C2,當回路C1中通過電流I1時,不僅與回路C1交鏈的磁鏈與I1成正比,而且與回路C2交鏈的磁鏈

12也與I1成正比,其比例系數(shù)稱為回路C1對回路C2的互感系數(shù),簡稱互感。3.互感同理,回路C2對回路C1的互感為C1C2I1I2Ro第76頁,共136頁,2024年2月25日,星期天互感只與回路的幾何形狀、尺寸、兩回路的相對位置以及周圍磁介質(zhì)有關(guān),而與電流無關(guān)。滿足互易關(guān)系,即M12=M21

當與回路交鏈的互感磁通與自感磁通具有相同的符號時,互感系數(shù)M為正值;反之,則互感系數(shù)M為負值?;ジ械奶攸c:第77頁,共136頁,2024年2月25日,星期天3.3.4恒定磁場的能量1.

磁場能量在恒定磁場建立過程中,電源克服感應(yīng)電動勢做功所供給的能量,就全部轉(zhuǎn)化成磁場能量。電流回路在恒定磁場中受到磁場力的作用而運動,表明恒定磁場具有能量。磁場能量是在建立電流的過程中,由電源供給的。當電流從零開始增加時,回路中的感應(yīng)電動勢要阻止電流的增加,因而必須有外加電壓克服回路中的感應(yīng)電動勢。假定建立并維持恒定電流時,沒有熱損耗。假定在恒定電流建立過程中,電流的變化足夠緩慢,沒有輻射損耗。第78頁,共136頁,2024年2月25日,星期天

設(shè)回路從零開始充電,最終的電流為

I、交鏈的磁鏈為

。在時刻t的電流為i=αI、磁鏈為ψ=α

。(0≤α≤1)根據(jù)能量守恒定律,此功也就是電流為I

的載流回路具有的磁場能量Wm,即對α從0到1積分,即得到外電源所做的總功為外加電壓應(yīng)為所做的功當α增加為(α+dα)時,回路中的感應(yīng)電動勢:第79頁,共136頁,2024年2月25日,星期天

對于N個載流回路,則有對于體分布電流,則有例如,對于兩個電流回路C1和回路C2,有回路C2的自有能回路C1的自有能C1和C2的互能第80頁,共136頁,2024年2月25日,星期天2.磁場能量密度

從場的觀點來看,磁場能量分布于磁場所在的整個空間。

磁場能量密度:

磁場的總能量:積分區(qū)域為電場所在的整個空間

對于線性、各向同性介質(zhì),則有第81頁,共136頁,2024年2月25日,星期天若電流分布在有限區(qū)域內(nèi),當閉合面S無限擴大時,則有故

推證:S第82頁,共136頁,2024年2月25日,星期天

例3.3.8

同軸電纜的內(nèi)導(dǎo)體半徑為a,外導(dǎo)體的內(nèi)、外半徑分別為b和c,如圖所示。導(dǎo)體中通有電流I,試求同軸電纜中單位長度儲存的磁場能量與自感。

解:由安培環(huán)路定理,得第83頁,共136頁,2024年2月25日,星期天三個區(qū)域單位長度內(nèi)的磁場能量分別為第84頁,共136頁,2024年2月25日,星期天單位長度內(nèi)總的磁場能量為單位長度的總自感內(nèi)導(dǎo)體的內(nèi)自感內(nèi)外導(dǎo)體間的外自感外導(dǎo)體的內(nèi)自感第85頁,共136頁,2024年2月25日,星期天3.3.5磁場力

假定第i個回路在磁場力的作用下產(chǎn)生一個虛位移dgi。此時,磁場力做功dA=Fidgi,系統(tǒng)的能量增加dWm。根據(jù)能量守恒定律,有式中dWS是與各電流回路相連接的外電源提供的能量。具體計算過程中,可假定各回路電流維持不變,或假定與各回路交鏈的磁通維持不變。虛位移原理第86頁,共136頁,2024年2月25日,星期天1.各回路電流維持不變

若假定各回路中電流不改變,則回路中的磁鏈必定發(fā)生改變,因此兩個回路都有感應(yīng)電動勢。此時,外接電源必然要做功來克服感應(yīng)電動勢以保持各回路中電流不變。此時,電源所提供的能量

即于是有故得到不變系統(tǒng)增加的磁能

第87頁,共136頁,2024年2月25日,星期天2.各回路的磁通不變故得到式中的“-”號表示磁場力做功是靠減少系統(tǒng)的磁場能量來實現(xiàn)的。若假定各回路的磁通不變,則各回路中的電流必定發(fā)生改變。由于各回路的磁通不變,回路中都沒有感應(yīng)電動勢,故與回路相連接的電源不對回路輸入能量,即

dWS=0,因此不變第88頁,共136頁,2024年2月25日,星期天例3.3.9如圖所示的一個電磁鐵,由鐵軛(繞有N匝線圈的鐵心)和銜鐵構(gòu)成。鐵軛和銜鐵的橫截面積均為S

,平均長度分別為l1和l2。鐵軛與銜鐵之間有一很小的空氣隙,其長度為x。設(shè)線圈中的電流為I,鐵軛和銜鐵的磁導(dǎo)率為。若忽略漏磁和邊緣效應(yīng),求鐵軛對銜鐵的吸引力。解在忽略漏磁和邊緣效應(yīng)的情況下,若保持磁通Ψ

不變,則B和H不變,儲存在鐵軛和銜鐵中的磁場能量也不變,而空氣隙中的磁場能量則要變化。于是作用在銜鐵上的磁場力為電磁鐵空氣隙中的磁場強度變第89頁,共136頁,2024年2月25日,星期天若采用式計算,由儲存在系統(tǒng)中的磁場能量由于和,考慮到,可得到同樣得到鐵軛對銜鐵的吸引力為根據(jù)安培環(huán)路定理,有第90頁,共136頁,2024年2月25日,星期天3.4靜態(tài)場的邊值問題及解的惟一性定理

本節(jié)內(nèi)容

3.4.1邊值問題的類型3.4.2惟一性定理

邊值問題:在給定的邊界條件下,求解位函數(shù)的泊松方程或拉普拉斯方程第91頁,共136頁,2024年2月25日,星期天3.4.1邊值問題的類型

已知場域邊界面S上的位函數(shù)值,即

第一類邊值問題(或狄里赫利問題)已知場域邊界面S上的位函數(shù)的法向?qū)?shù)值,即已知場域一部分邊界面S1上的位函數(shù)值,而另一部分邊界面S2上則已知位函數(shù)的法向?qū)?shù)值,即

第三類邊值問題(或混合邊值問題)

第二類邊值問題(或紐曼問題)第92頁,共136頁,2024年2月25日,星期天自然邊界條件(無界空間)周期邊界條件銜接條件不同媒質(zhì)分界面上的邊界條件,如第93頁,共136頁,2024年2月25日,星期天例:(第一類邊值問題)(第三類邊值問題)例:第94頁,共136頁,2024年2月25日,星期天在場域V的邊界面S上給定或的值,則泊松方程或拉普拉斯方程在場域V具有惟一值。3.4.2惟一性定理

惟一性定理的重要意義給出了靜態(tài)場邊值問題具有惟一解的條件為靜態(tài)場邊值問題的各種求解方法提供了理論依據(jù)為求解結(jié)果的正確性提供了判據(jù)

惟一性定理的表述第95頁,共136頁,2024年2月25日,星期天

惟一性定理的證明反證法:假設(shè)解不惟一,則有兩個位函數(shù)和在場域V內(nèi)滿足同樣的方程,即且在邊界面S上有令,則在場域V內(nèi)且在邊界面S上滿足同樣的邊界條件?;蚧虻?6頁,共136頁,2024年2月25日,星期天由格林第一恒等式可得到對于第一類邊界條件:對于第二類邊界條件:若和取同一點Q為參考點,則對于第三類邊界條件:第97頁,共136頁,2024年2月25日,星期天

本節(jié)內(nèi)容

3.5.1鏡像法的基本原理3.5.2接地導(dǎo)體平面的鏡像3.5.3導(dǎo)體球面的鏡像3.5.4導(dǎo)體圓柱面的鏡像3.5.5點電荷與無限大電介質(zhì)平面的鏡像3.5.6線電流與無限大磁介質(zhì)平面的鏡像

3.5鏡像法第98頁,共136頁,2024年2月25日,星期天當有電荷存在于導(dǎo)體或介質(zhì)表面附近時,導(dǎo)體和介質(zhì)表面會出現(xiàn)感應(yīng)電荷或極化電荷,而感應(yīng)電荷或極化電荷將影響場的分布。非均勻感應(yīng)電荷產(chǎn)生的電位很難求解,可以用等效電荷的電位替代1.問題的提出幾個實例q3.5.1鏡像法的基本原理接地導(dǎo)體板附近有一個點電荷,如圖所示。q′非均勻感應(yīng)電荷等效電荷第99頁,共136頁,2024年2月25日,星期天接地導(dǎo)體球附近有一個點電荷,如圖。非均勻感應(yīng)電荷產(chǎn)生的電位很難求解,可以用等效電荷的電位替代接地導(dǎo)體柱附近有一個線電荷。情況與上例類似,但等效電荷為線電荷。q非均勻感應(yīng)電荷q′等效電荷

結(jié)論:所謂鏡像法是將不均勻電荷分布的作用等效為點電荷或線電荷的作用。

問題:這種等效電荷是否存在?這種等效是否合理?第100頁,共136頁,2024年2月25日,星期天2.鏡像法的原理用位于場域邊界外虛設(shè)的較簡單的鏡像電荷分布來等效替代該邊界上未知的較為復(fù)雜的電荷分布,從而將原含該邊界的非均勻媒質(zhì)空間變換成無限大單一均勻媒質(zhì)的空間,使分析計算過程得以明顯簡化的一種間接求解法。

在導(dǎo)體形狀、幾何尺寸、帶電狀況和媒質(zhì)幾何結(jié)構(gòu)、特性不變的前提條件下,根據(jù)惟一性定理,只要找出的解答滿足在同一泛定方程下問題所給定的邊界條件,那就是該問題的解答,并且是惟一的解答。鏡像法正是巧妙地應(yīng)用了這一基本原理、面向多種典型結(jié)構(gòu)的工程電磁場問題所構(gòu)成的一種有效的解析求解法。3.鏡像法的理論基礎(chǔ)——解的惟一性定理第101頁,共136頁,2024年2月25日,星期天像電荷的個數(shù)、位置及其電量大小——“三要素”。4.鏡像法應(yīng)用的關(guān)鍵點5.確定鏡像電荷的兩條原則

等效求解的“有效場域”。

鏡像電荷的確定

像電荷必須位于所求解的場區(qū)域以外的空間中。

像電荷的個數(shù)、位置及電荷量的大小以滿足所求解的場區(qū)域的邊界條件來確定。第102頁,共136頁,2024年2月25日,星期天1.點電荷對無限大接地導(dǎo)體平面的鏡像滿足原問題的邊界條件,所得的結(jié)果是正確的。3.5.2接地導(dǎo)體平面的鏡像鏡像電荷電位函數(shù)因z=0時,有效區(qū)域qq第103頁,共136頁,2024年2月25日,星期天上半空間(z≥0)的電位函數(shù)q導(dǎo)體平面上的感應(yīng)電荷密度為導(dǎo)體平面上的總感應(yīng)電荷為第104頁,共136頁,2024年2月25日,星期天2.線電荷對無限大接地導(dǎo)體平面的鏡像鏡像線電荷:滿足原問題的邊界條件,所得的解是正確的。電位函數(shù)原問題當z=0時,有效區(qū)域第105頁,共136頁,2024年2月25日,星期天3.點電荷對相交半無限大接地導(dǎo)體平面的鏡像如圖所示,兩個相互垂直相連的半無限大接地導(dǎo)體平板,點電荷q位于(d1,d2)處。顯然,q1對平面2以及q2對平面1均不能滿足邊界條件。對于平面1,有鏡像電荷q1=-q,位于(-d1,d2)對于平面2,有鏡像電荷q2=-q,位于(d1,-d2)只有在(-d1,-d2)處再設(shè)置一鏡像電荷q3=q,所有邊界條件才能得到滿足。電位函數(shù)

d11qd22RR1R2R3q1d1d2d2q2d1q3d2d1第106頁,共136頁,2024年2月25日,星期天

例3.5.1一個點電荷q與無限大導(dǎo)體平面距離為d,如果把它移至無窮遠處,需要做多少功?

解:移動電荷q時,外力需要克服電場力做功,而電荷q受的電場力來源于導(dǎo)體板上的感應(yīng)電荷??梢韵惹箅姾蓂移至無窮遠時電場力所做的功。q'qx=∞

0d-d由鏡像法,感應(yīng)電荷可以用像電荷

替代。當電荷q移至x時,像電荷

應(yīng)位于-x,則像電荷產(chǎn)生的電場強度第107頁,共136頁,2024年2月25日,星期天3.5.3導(dǎo)體球面的鏡像1.點電荷對接地導(dǎo)體球面的鏡像球面上的感應(yīng)電荷可用鏡像電荷q'來等效。q'應(yīng)位于導(dǎo)體球內(nèi)(顯然不影響原方程),且在點電荷q與球心的連線上,距球心為d'。則有如圖所示,點電荷q位于半徑為a的接地導(dǎo)體球外,距球心為d。方法:利用導(dǎo)體球面上電位為零確定

和q′。

問題:

PqarRdqPaq'rR'Rdd'第108頁,共136頁,2024年2月25日,星期天令r=a,由球面上電位為零,即

=0,得此式應(yīng)在整個球面上都成立。條件:若像電荷的位置像電荷的電量常數(shù)qPq'aR'Rdd'O由于第109頁,共136頁,2024年2月25日,星期天可見,導(dǎo)體球面上的總感應(yīng)電荷也與所設(shè)置的鏡像電荷相等。球外的電位函數(shù)為導(dǎo)體球面上的總感應(yīng)電荷為球面上的感應(yīng)電荷面密度為第110頁,共136頁,2024年2月25日,星期天點電荷對接地空心導(dǎo)體球殼的鏡像如圖所示接地空心導(dǎo)體球殼的內(nèi)半徑為a、外半徑為b,點電荷q位于球殼內(nèi),與球心相距為d(d<a)。

由于球殼接地,感應(yīng)電荷分布在球殼的內(nèi)表面上。鏡像電荷q應(yīng)位于導(dǎo)體球殼外,且在點電荷q與球心的連線的延長線上。|q'|>|q|,可見鏡像電荷的電荷量大于點電荷的電荷量像電荷的位置和電量與外半徑b無關(guān)(為什么?)aqdobq'rR'RaqdOd'與點荷位于接地導(dǎo)體球外同樣的分析,可得到第111頁,共136頁,2024年2月25日,星期天球殼內(nèi)的電位感應(yīng)電荷分布在導(dǎo)體球面的內(nèi)表面上,電荷面密度為導(dǎo)體球面的內(nèi)表面上的總感應(yīng)電荷為可見,在這種情況下,鏡像電荷與感應(yīng)電荷的電荷量不相等。第112頁,共136頁,2024年2月25日,星期天2.點電荷對不接地導(dǎo)體球的鏡像先設(shè)想導(dǎo)體球是接地的,則球面上只有總電荷量為q'的感應(yīng)電荷分布,則

導(dǎo)體球不接地時的特點:導(dǎo)體球面是電位不為零的等位面;球面上既有感應(yīng)負電荷分布也有感應(yīng)正電荷分布,但總的感應(yīng)電荷為零。

采用疊加原理來確定鏡像電荷點電荷q位于一個半徑為a的不接地導(dǎo)體球外,距球心為d。PqarRdO第113頁,共136頁,2024年2月25日,星期天然后斷開接地線,并將電荷-q'加于導(dǎo)體球上,從而使總電荷為零。為保持導(dǎo)體球面為等位面,所加的電荷-q'可用一個位于球心的鏡像電荷q"來替代,即球外任意點的電位為qPaq'rR'Rdd'q"O第114頁,共136頁,2024年2月25日,星期天3.5.4導(dǎo)體圓柱面的鏡像問題:如圖1所示,一根電荷線密度為的無限長線電荷位于半徑為a的無限長接地導(dǎo)體圓柱面外,與圓柱的軸線平行且到軸線的距離為d。圖1線電荷與導(dǎo)體圓柱圖2線電荷與導(dǎo)體圓柱的鏡像特點:在導(dǎo)體圓柱面上有感應(yīng)電荷,圓軸外的電位由線電荷與感應(yīng)電荷共同產(chǎn)生。分析方法:鏡像電荷是圓柱面內(nèi)部與軸線平行的無限長線電荷,如圖2所示。1.線電荷對接地導(dǎo)體圓柱面的鏡像第115頁,共136頁,2024年2月25日,星期天由于導(dǎo)體圓柱接地,所以當時,電位應(yīng)為零,即

所以有設(shè)鏡像電荷的線密度為,且距圓柱的軸線為,則由和共同產(chǎn)生的電位函數(shù)由于上式對任意的都成立,因此,將上式對求導(dǎo),可以得到第116頁,共136頁,2024年2月25日,星期天導(dǎo)體圓柱面外的電位函數(shù):由時,故導(dǎo)體圓柱面上的感應(yīng)電荷面密度為導(dǎo)體圓柱面上單位長度的感應(yīng)電荷為導(dǎo)體圓柱面上單位長度的感應(yīng)電荷與所設(shè)置的鏡像電荷相等。第117頁,共136頁,2024年2月25日,星期天2.兩平行圓柱導(dǎo)體的電軸圖1兩平行圓柱導(dǎo)體圖2兩平行圓柱導(dǎo)體的電軸特點:由于兩圓柱帶電導(dǎo)體的電場互相影響,使導(dǎo)體表面的電荷分布不均勻,相對的一側(cè)電荷密度大,而相背的一側(cè)電荷密度較小。分析方法:將導(dǎo)體表面上的電荷用線密度分別為、且相距為2b的兩根無限長帶電細線來等效替代,如圖2所示。問題:如圖1所示,兩平行導(dǎo)體圓柱的半徑均為a,兩導(dǎo)體軸線間距為2h,單位長度分別帶電荷和。第118頁,共136頁,2024年2月25日,星期天圖2兩平行圓柱導(dǎo)體的電軸通常將帶電細線所在的位置稱為圓柱導(dǎo)體的電軸,因而這種方法又稱為電軸法。由

利用線電荷與接地導(dǎo)體圓柱面的鏡像確定b。思考:能否用電軸法求解半徑不同的兩平行圓柱導(dǎo)體問題?第119頁,共136頁,2024年2月25日,星期天3.5.5點電荷與無限大電介質(zhì)平面的鏡像

圖1點電荷與電介質(zhì)分界平面特點:在點電荷的電場作用下,電介質(zhì)產(chǎn)生極化,在介質(zhì)分界面上形成極化電荷分布。此時,空間中任一點的電場由點電荷與極化電荷共同產(chǎn)生。圖2介質(zhì)1的鏡像電荷問題:如圖1所示,介電常數(shù)分別為和的兩種不同電介質(zhì)的分界面是無

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論