版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省邢臺一中、邢臺二中2024年高三下學期聯(lián)考數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.2.數(shù)列滿足:,則數(shù)列前項的和為A. B. C. D.3.曲線上任意一點處的切線斜率的最小值為()A.3 B.2 C. D.14.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.5.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.36.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件7.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實數(shù)的取值范圍是A. B. C. D.8.在長方體中,,則直線與平面所成角的余弦值為()A. B. C. D.9.本次模擬考試結束后,班級要排一張語文、數(shù)學、英語、物理、化學、生物六科試卷講評順序表,若化學排在生物前面,數(shù)學與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種10.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.11.已知滿足,則()A. B. C. D.12.數(shù)列{an},滿足對任意的n∈N+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數(shù)列{an}的前100項的和S100=()A.132 B.299 C.68 D.99二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的值域為_____.14.為了了解一批產品的長度(單位:毫米)情況,現(xiàn)抽取容量為400的樣本進行檢測,如圖是檢測結果的頻率分布直方圖,根據(jù)產品標準,單件產品長度在區(qū)間的一等品,在區(qū)間和的為二等品,其余均為三等品,則樣本中三等品的件數(shù)為__________.15.若復數(shù)滿足,其中為虛數(shù)單位,則的共軛復數(shù)在復平面內對應點的坐標為_____.16.若x,y均為正數(shù),且,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當a=2時,求不等式的解集;(2)設函數(shù).當時,,求的取值范圍.18.(12分)已知橢圓,上頂點為,離心率為,直線交軸于點,交橢圓于,兩點,直線,分別交軸于點,.(Ⅰ)求橢圓的方程;(Ⅱ)求證:為定值.19.(12分)對于正整數(shù),如果個整數(shù)滿足,且,則稱數(shù)組為的一個“正整數(shù)分拆”.記均為偶數(shù)的“正整數(shù)分拆”的個數(shù)為均為奇數(shù)的“正整數(shù)分拆”的個數(shù)為.(Ⅰ)寫出整數(shù)4的所有“正整數(shù)分拆”;(Ⅱ)對于給定的整數(shù),設是的一個“正整數(shù)分拆”,且,求的最大值;(Ⅲ)對所有的正整數(shù),證明:;并求出使得等號成立的的值.(注:對于的兩個“正整數(shù)分拆”與,當且僅當且時,稱這兩個“正整數(shù)分拆”是相同的.)20.(12分)已知數(shù)列的前n項和,是等差數(shù)列,且.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)令.求數(shù)列的前n項和.21.(12分)設等差數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)求的前項和及使得最小的的值.22.(10分)以平面直角坐標系的原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,已知曲線,曲線(為參數(shù)),求曲線交點的直角坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)三視圖,可得該幾何體是一個三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結論.【詳解】如圖所示:由三視圖得:該幾何體是一個三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運算求解的能力,屬于中檔題.2、A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結構特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結果錯誤.3、A【解析】
根據(jù)題意,求導后結合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導數(shù)的幾何意義得:,即切線斜率,當且僅當?shù)忍柍闪?,所以上任意一點處的切線斜率的最小值為3.故選:A.【點睛】本題考查導數(shù)的幾何意義的應用以及運用基本不等式求最值,考查計算能力.4、D【解析】
取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【點睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.5、C【解析】
連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數(shù)和,即可求出的值.【詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【點睛】本題考查了向量的線性運算,由三點共線求參數(shù)的問題,熟記向量的共線定理是關鍵.屬于基礎題.6、A【解析】
,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點睛】本題考查了線面和面面垂直的判定與性質定理、簡易邏輯的判定方法,考查了推理能力與計算能力.7、D【解析】
由題意得,表示不等式的解集中整數(shù)解之和為6.當時,數(shù)形結合(如圖)得的解集中的整數(shù)解有無數(shù)多個,解集中的整數(shù)解之和一定大于6.當時,,數(shù)形結合(如圖),由解得.在內有3個整數(shù)解,為1,2,3,滿足,所以符合題意.當時,作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數(shù)的取值范圍是.故選D.8、C【解析】
在長方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結論.【詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點睛】本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎題.9、B【解析】
利用分步計數(shù)原理結合排列求解即可【詳解】第一步排語文,英語,化學,生物4種,且化學排在生物前面,有種排法;第二步將數(shù)學和物理插入前4科除最后位置外的4個空擋中的2個,有種排法,所以不同的排表方法共有種.選.【點睛】本題考查排列的應用,不相鄰采用插空法求解,準確分步是關鍵,是基礎題10、C【解析】
根據(jù)表示圓和直線與圓有公共點,得到,再利用二次函數(shù)的性質求解.【詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C【點睛】本題主要考查圓的方程,直線與圓的位置關系以及二次函數(shù)的性質,還考查了運算求解的能力,屬于中檔題.11、A【解析】
利用兩角和與差的余弦公式展開計算可得結果.【詳解】,.故選:A.【點睛】本題考查三角求值,涉及兩角和與差的余弦公式的應用,考查計算能力,屬于基礎題.12、B【解析】
由為定值,可得,則是以3為周期的數(shù)列,求出,即求.【詳解】對任意的,均有為定值,,故,是以3為周期的數(shù)列,故,.故選:.【點睛】本題考查周期數(shù)列求和,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用配方法化簡式子,可得,然后根據(jù)觀察法,可得結果.【詳解】函數(shù)的定義域為所以函數(shù)的值域為故答案為:【點睛】本題考查的是用配方法求函數(shù)的值域問題,屬基礎題。14、100.【解析】分析:根據(jù)頻率分布直方圖得到三等品的頻率,然后可求得樣本中三等品的件數(shù).詳解:由題意得,三等品的長度在區(qū)間,和內,根據(jù)頻率分布直方圖可得三等品的頻率為,∴樣本中三等品的件數(shù)為.點睛:頻率分布直方圖的縱坐標為,因此每一個小矩形的面積表示樣本個體落在該區(qū)間內的頻率,把小矩形的高視為頻率時常犯的錯誤.15、【解析】
把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡,求出得答案.【詳解】,,則,的共軛復數(shù)在復平面內對應點的坐標為,故答案為【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義準確計算是關鍵,是基礎題.16、4【解析】
由基本不等式可得,則,即可解得.【詳解】方法一:,當且僅當時取等.方法二:因為,所以,所以,當且僅當時取等.故答案為:.【點睛】本題考查基本不等式在求最小值中的應用,考查學生對基本不等式的靈活使用,難度較易.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)當時;(2)由等價于,解之得.試題解析:(1)當時,.解不等式,得.因此,的解集為.(2)當時,,當時等號成立,所以當時,等價于.①當時,①等價于,無解.當時,①等價于,解得.所以的取值范圍是.考點:不等式選講.18、(Ⅰ);(Ⅱ),證明見解析.【解析】
(Ⅰ)根據(jù)題意列出關于,,的方程組,解出,,的值,即可得到橢圓的方程;(Ⅱ)設點,,點,,易求直線的方程為:,令得,,同理可得,所以,聯(lián)立直線與橢圓方程,利用韋達定理代入上式,化簡即可得到.【詳解】(Ⅰ)解:由題意可知:,解得,橢圓的方程為:;(Ⅱ)證:設點,,點,,聯(lián)立方程,消去得:,,①,點,,,直線的方程為:,令得,,,,同理可得,,,把①式代入上式得:,為定值.【點睛】本題主要考查直線與橢圓的位置關系、定值問題的求解;關鍵是能夠通過直線與橢圓聯(lián)立得到韋達定理的形式,利用韋達定理化簡三角形面積得到定值;考查計算能力與推理能力,屬于中檔題.19、(Ⅰ),,,,;(Ⅱ)為偶數(shù)時,,為奇數(shù)時,;(Ⅲ)證明見解析,,【解析】
(Ⅰ)根據(jù)題意直接寫出答案.(Ⅱ)討論當為偶數(shù)時,最大為,當為奇數(shù)時,最大為,得到答案.(Ⅲ)討論當為奇數(shù)時,,至少存在一個全為1的拆分,故,當為偶數(shù)時,根據(jù)對應關系得到,再計算,,得到答案.【詳解】(Ⅰ)整數(shù)4的所有“正整數(shù)分拆”為:,,,,.(Ⅱ)當為偶數(shù)時,時,最大為;當為奇數(shù)時,時,最大為;綜上所述:為偶數(shù),最大為,為奇數(shù)時,最大為.(Ⅲ)當為奇數(shù)時,,至少存在一個全為1的拆分,故;當為偶數(shù)時,設是每個數(shù)均為偶數(shù)的“正整數(shù)分拆”,則它至少對應了和的均為奇數(shù)的“正整數(shù)分拆”,故.綜上所述:.當時,偶數(shù)“正整數(shù)分拆”為,奇數(shù)“正整數(shù)分拆”為,;當時,偶數(shù)“正整數(shù)分拆”為,,奇數(shù)“正整數(shù)分拆”為,故;當時,對于偶數(shù)“正整數(shù)分拆”,除了各項不全為的奇數(shù)拆分外,至少多出一項各項均為的“正整數(shù)分拆”,故.綜上所述:使成立的為:或.【點睛】本土考查了數(shù)列的新定義問題,意在考查學生的計算能力和綜合應用能力.20、(Ⅰ);(Ⅱ)【解析】試題分析:(1)先由公式求出數(shù)列的通項公式;進而列方程組求數(shù)列的首項與公差,得數(shù)列的通項公式;(2)由(1)可得,再利用“錯位相減法”求數(shù)列的前項和.試題解析:(1)由題意知當時,,當時,,所以.設數(shù)列的公差為,由,即,可解得,所以.(2)由(1)知,又,得,,兩式作差,得所以.考點1、待定系數(shù)法求等差數(shù)列的通項公式;2、利用“錯位相減法”求數(shù)列的前項和.【易錯點晴】本題主要考查待定系數(shù)法求等差數(shù)列的通項公式、利用“錯位相減法”求數(shù)列的前項和,屬于難題.“錯位相減法”求數(shù)列的前項和是重點也是難點,利用“錯位相減法”求數(shù)列的和應注意以下幾點:①掌握運用“錯位相減法”求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);②相減時注意最后一項的符號;③求和時注意項數(shù)別出錯;④最后結果一定不能忘記等式兩邊同時除以.21、(1)(2);時,取得最小值【解析】
(1)設
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024正規(guī)個人房屋租賃合同格式(簡單版)
- 街區(qū)店鋪租賃協(xié)議
- 合作事宜協(xié)議書模板
- 個人買房協(xié)議書
- 2024股份合作協(xié)議書合同范本
- 2024競爭性招標合同范文
- 城市更新項目拆除合同
- 工程工具租賃合同
- 2024補償貿易借款合同標準范本范文
- 專業(yè)婚車租賃協(xié)議
- 教科版四年級科學上冊全冊復習教學設計及知識點整理
- 氣管插管操作規(guī)范(完整版)課件
- 電磁波法探測技術—地質雷達綜述
- 齊魯工業(yè)大學2022年上期末藥物分離工程期末考試復習資料
- 《藥疹(Drug Eruption)》PPT課件
- 建筑門窗檢測試題(共10頁)
- 彩盒產品不良缺陷的識別
- 泥漿材料及處理劑大全
- 售后服務部工作流程圖
- 洪價經字【2011】43號南昌市機動車停放保管服務各類收費標準
- 13學校學生食堂“三防”制度
評論
0/150
提交評論