版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
衡陽市重點中學2023-2024學年高三第一次模擬考試數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.32.設a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件3.若,則的值為()A. B. C. D.4.設全集U=R,集合,則()A. B. C. D.5.已知集合,,則等于()A. B. C. D.6.設分別為的三邊的中點,則()A. B. C. D.7.若執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.48.若復數(shù)滿足,則對應的點位于復平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.運行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.10.在空間直角坐標系中,四面體各頂點坐標分別為:.假設螞蟻窩在點,一只螞蟻從點出發(fā),需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.11.已知橢圓內(nèi)有一條以點為中點的弦,則直線的方程為()A. B.C. D.12.若直線經(jīng)過拋物線的焦點,則()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知以x±2y=0為漸近線的雙曲線經(jīng)過點,則該雙曲線的標準方程為________.14.已知變量(m>0),且,若恒成立,則m的最大值________.15.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為________.16.如圖,從一個邊長為的正三角形紙片的三個角上,沿圖中虛線剪出三個全等的四邊形,余下部分再以虛線為折痕折起,恰好圍成一個缺少上底的正三棱柱,而剪出的三個相同的四邊形恰好拼成這個正三棱柱的上底,則所得正三棱柱的體積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點.(1)求證:平面平面;(2)點在線段上,且,求平面與平面所成的銳二面角的余弦值.18.(12分)已知,(其中).(1)求;(2)求證:當時,.19.(12分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+)=1.(1)求直線l的直角坐標方程和曲線C的普通方程;(2)已知點M(2,0),若直線l與曲線C相交于P、Q兩點,求的值.20.(12分)已知函數(shù).(Ⅰ)求函數(shù)的單調區(qū)間;(Ⅱ)當時,求函數(shù)在上最小值.21.(12分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點.(Ⅰ)求證:平面;(Ⅱ)設,求三棱錐的體積.22.(10分)已知圓M:及定點,點A是圓M上的動點,點B在上,點G在上,且滿足,,點G的軌跡為曲線C.(1)求曲線C的方程;(2)設斜率為k的動直線l與曲線C有且只有一個公共點,與直線和分別交于P、Q兩點.當時,求(O為坐標原點)面積的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)正切函數(shù)的圖象求出A、B兩點的坐標,再求出向量的坐標,根據(jù)向量數(shù)量積的坐標運算求出結果.【詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運算,屬于綜合題,但是難度不大,解題關鍵是利用圖象與正切函數(shù)圖象求出坐標,再根據(jù)向量數(shù)量積的坐標運算可得結果,屬于簡單題.2、C【解析】
根據(jù)對數(shù)函數(shù)以及指數(shù)函數(shù)的性質求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對數(shù)不等式的解法,是基礎題.3、C【解析】
根據(jù),再根據(jù)二項式的通項公式進行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應用,考查了二項式展開式通項公式的應用,考查了數(shù)學運算能力4、A【解析】
求出集合M和集合N,,利用集合交集補集的定義進行計算即可.【詳解】,,則,故選:A.【點睛】本題考查集合的交集和補集的運算,考查指數(shù)不等式和二次不等式的解法,屬于基礎題.5、B【解析】
解不等式確定集合,然后由補集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點睛】本題考查集合的綜合運算,以及一元二次不等式的解法,屬于基礎題型.6、B【解析】
根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運算即可求解.【詳解】根據(jù)題意,可得幾何關系如下圖所示:,故選:B【點睛】本題考查了向量加法的線性運算,屬于基礎題.7、D【解析】
模擬程序運行,觀察變量值的變化,得出的變化以4為周期出現(xiàn),由此可得結論.【詳解】;如此循環(huán)下去,當時,,此時不滿足,循環(huán)結束,輸出的值是4.故選:D.【點睛】本題考查程序框圖,考查循環(huán)結構.解題時模擬程序運行,觀察變量值的變化,確定程序功能,可得結論.8、D【解析】
利用復數(shù)模的計算、復數(shù)的除法化簡復數(shù),再根據(jù)復數(shù)的幾何意義,即可得答案;【詳解】,對應的點,對應的點位于復平面的第四象限.故選:D.【點睛】本題考查復數(shù)模的計算、復數(shù)的除法、復數(shù)的幾何意義,考查運算求解能力,屬于基礎題.9、C【解析】
模擬執(zhí)行程序框圖,即可容易求得結果.【詳解】運行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時要輸出的值為99.此時.故選:C.【點睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉化思想,涉及判斷條件的選擇,屬基礎題.10、C【解析】
將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學生的空間想象能力,屬于中檔題.11、C【解析】
設,,則,,相減得到,解得答案.【詳解】設,,設直線斜率為,則,,相減得到:,的中點為,即,故,直線的方程為:.故選:.【點睛】本題考查了橢圓內(nèi)點差法求直線方程,意在考查學生的計算能力和應用能力.12、B【解析】
計算拋物線的交點為,代入計算得到答案.【詳解】可化為,焦點坐標為,故.故選:.【點睛】本題考查了拋物線的焦點,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設雙曲線方程為,代入點,計算得到答案.【詳解】雙曲線漸近線為,則設雙曲線方程為:,代入點,則.故雙曲線方程為:.故答案為:.【點睛】本題考查了根據(jù)漸近線求雙曲線,設雙曲線方程為是解題的關鍵.14、【解析】
在不等式兩邊同時取對數(shù),然后構造函數(shù)f(x)=,求函數(shù)的導數(shù),研究函數(shù)的單調性即可得到結論.【詳解】不等式兩邊同時取對數(shù)得,即x2lnx1<x1lnx2,又即成立,設f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),則函數(shù)f(x)在(0,m)上為增函數(shù),函數(shù)的導數(shù),由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函數(shù)f(x)的最大增區(qū)間為(0,e),則m的最大值為e故答案為:e【點睛】本題考查函數(shù)單調性與導數(shù)之間的應用,根據(jù)條件利用取對數(shù)得到不等式,從而可構造新函數(shù),是解決本題的關鍵15、【解析】
根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結合圖中數(shù)據(jù)求出它的體積.【詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結合圖中數(shù)據(jù),計算它的體積為.故答案為:.【點睛】本題考查了根據(jù)三視圖求簡單組合體的體積應用問題,是基礎題.16、1【解析】
由題意得正三棱柱底面邊長6,高為,由此能求出所得正三棱柱的體積.【詳解】如圖,作,交于,,由題意得正三棱柱底面邊長,高為,所得正三棱柱的體積為:.故答案為:1.【點睛】本題考查立體幾何中的翻折問題、正三棱柱體積的求法、三棱柱的結構特征等基礎知識,考查空間想象能力、運算求解能力,求解時注意翻折前后的不變量.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)根據(jù)等邊三角形的性質證得,根據(jù)面面垂直的性質定理,證得底面,由此證得,結合證得平面,由此證得:平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成的銳二面角的余弦值.【詳解】(1)證明:∵為等邊三角形,為的中點,∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標系,則,,,由已知,得,設平面的法向量為,則令,則,∴由(1)知平面的法向量可取為∴∴平面與平面所成的銳二面角的余弦值為.【點睛】本小題主要考查面面垂直的判定定理和性質定理,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)(2)見解析【解析】
(1)取,則;取,則,∴;(2)要證,只需證,當時,;假設當時,結論成立,即,兩邊同乘以3得:而∴,即時結論也成立,∴當時,成立.綜上原不等式獲證.19、(1)l:,C方程為;(2)=【解析】
(1)直接利用轉換關系,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉換.
(2)利用一元二次方程根和系數(shù)關系式的應用求出結果.【詳解】(1)曲線C的參數(shù)方程為(m為參數(shù)),兩式相加得到,進一步轉換為.直線l的極坐標方程為ρcos(θ+)=1,則轉換為直角坐標方程為.(2)將直線的方程轉換為參數(shù)方程為(t為參數(shù)),代入得到(t1和t2為P、Q對應的參數(shù)),所以,,所以=.【點睛】本題考查參數(shù)方程極坐標方程和直角坐標方程之間的轉換,一元二次方程根和系數(shù)關系式的應用,主要考查學生的運算能力和轉換能力及思維能力,屬于基礎題型.20、(Ⅰ)見解析;(Ⅱ)當時,函數(shù)的最小值是;當時,函數(shù)的最小值是【解析】
(1)求出導函數(shù),并且解出它的零點x=,再分區(qū)間討論導數(shù)的正負,即可得到函數(shù)f(x)的單調區(qū)間;
(2)分三種情況加以討論,結合函數(shù)的單調性與函數(shù)值的大小比較,即可得到當0<a<ln2時,函數(shù)f(x)的最小值是-a;當a≥ln2時,函數(shù)f(x)的最小值是ln2-2a.【詳解】函數(shù)的定義域
為.
因為,令,可得;
當時,;當時,,綜上所述:可知函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為當,即時,函數(shù)在區(qū)間上是減函數(shù),
的最小值是當,即時,函數(shù)在區(qū)間上是增函數(shù),的最小值是當,即時,函數(shù)在上是增函數(shù),在上是減函數(shù).
又,
當時,的最小值是;
當時,的最小值為綜上所述,結論為當時,函數(shù)的最小值是;
當時,函數(shù)的最小值是.【點睛】求函數(shù)極值與最值的步驟:(1)確定函數(shù)的定義域;(2)求導數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側值的符號,如果左正右負(左增右減),那么在處取極大值,如果左負右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點值的函數(shù)值與極值的大小21、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)取中點,連,,根據(jù)平行四邊形,可得,進而證得平面平面,利用面面垂直的性質,得平面,又由,即可得到平面.(Ⅱ)根據(jù)三棱錐的體積公式,利用等積法,即可求解.【詳解】(Ⅰ)取中點,連,,由,可得,可得是平行四邊形,則,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中點,則,而平面平面,而,∴平面.(Ⅱ)根據(jù)三棱錐的體積公式,得.【點睛】本題主要考查了空間中線面位置關系的判定與證明,以及利用“等體積法”求解三棱錐的體積,其中解答中熟記線面位置關系的判定定理和性質定理,以及合理利用“等體積法”求解是解答的關鍵,著重考查了推理與論證能力,屬于基礎題.22、(1);(2).【解析】
(1)根據(jù)題意得到GB是線段的中垂線,從而為定值,根據(jù)橢圓定義可知點G的軌跡是以M,N為焦點的橢圓,即可求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國耐火材料行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2025-2030年中國專業(yè)促銷服務行業(yè)開拓第二增長曲線戰(zhàn)略制定與實施研究報告
- 2025-2030年中國預應力混凝土用鋼材行業(yè)并購重組擴張戰(zhàn)略制定與實施研究報告
- 2025-2030年中國商用后廚設備服務行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2025-2030年中國旅居康養(yǎng)行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實施研究報告
- 和黃醫(yī)藥出售非核心合資企業(yè)交易摘要 -戰(zhàn)略性出售上海和黃藥業(yè)45%股權聚焦抗體靶向偶聯(lián)藥物 (ATTC)平臺
- 河北省石家莊市2024屆部分名校高三上學期一調考試英語
- 粉煤灰陶粒項目可行性研究報告立項模板
- 來賓關于成立固體廢物處理利用公司可行性報告
- 廣東省深圳市2023-2024學年五年級上學期英語期末試卷
- 藥物分離純化-藥物分離純化技術的作用
- 《精益生產(chǎn)培訓》課件
- GB/T 3518-2023鱗片石墨
- 22G101三維立體彩色圖集
- 2024高中歷史中外歷史綱要下冊重點知識點歸納總結(復習必背)
- MQL4命令中文詳解手冊
- 水平井施工方案及措施
- 資產(chǎn)評估常用數(shù)據(jù)與參數(shù)手冊
- 分子影像學概論培訓課件
- 小學四年級數(shù)學上冊促銷問題
- 國內(nèi)外中學數(shù)學教學改革與發(fā)展
評論
0/150
提交評論