黑龍江省大慶市第五十六中學2023-2024學年中考數學考試模擬沖刺卷含解析_第1頁
黑龍江省大慶市第五十六中學2023-2024學年中考數學考試模擬沖刺卷含解析_第2頁
黑龍江省大慶市第五十六中學2023-2024學年中考數學考試模擬沖刺卷含解析_第3頁
黑龍江省大慶市第五十六中學2023-2024學年中考數學考試模擬沖刺卷含解析_第4頁
黑龍江省大慶市第五十六中學2023-2024學年中考數學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省大慶市第五十六中學2023-2024學年中考數學考試模擬沖刺卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.函數(為常數)的圖像上有三點,,,則函數值的大小關系是()A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y12.如圖,已知垂直于的平分線于點,交于點,,若的面積為1,則的面積是()A. B. C. D.3.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-24.下列運算正確的()A.(b2)3=b5 B.x3÷x3=x C.5y3?3y2=15y5 D.a+a2=a35.如圖,四邊形ABCD是邊長為1的正方形,動點E、F分別從點C,D出發(fā),以相同速度分別沿CB,DC運動(點E到達C時,兩點同時停止運動).連接AE,BF交于點P,過點P分別作PM∥CD,PN∥BC,則線段MN的長度的最小值為()A. B. C. D.16.如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=()A.76° B.78° C.80° D.82°7.據國土資源部數據顯示,我國是全球“可燃冰”資源儲量最多的國家之一,海、陸總儲量約為39000000000噸油當量,將39000000000用科學記數法表示為()A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×1098.如圖,將△ABE向右平移2cm得到△DCF,如果△ABE的周長是16cm,那么四邊形ABFD的周長是(

)A.16cm B.18cm C.20cm D.21cm9.每到四月,許多地方楊絮、柳絮如雪花般漫天飛舞,人們不堪其憂,據測定,楊絮纖維的直徑約為0.0000105m,該數值用科學記數法表示為()A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣710.如圖是由四個相同的小正方體堆成的物體,它的正視圖是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,AB=AC,AH⊥BC,垂足為點H,如果AH=BC,那么sin∠BAC的值是____.12.如圖,在直角坐標系中,正方形的中心在原點O,且正方形的一組對邊與x軸平行,點P(3a,a)是反比例函數(k>0)的圖象上與正方形的一個交點.若圖中陰影部分的面積等于9,則這個反比例函數的解析式為▲.13.因式分解:=14.把兩個同樣大小的含45°角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個的直角頂點重合于點A,且另三個銳角頂點B,C,D在同一直線上.若AB=,則CD=_____.15.如圖,在中,于點,于點,為邊的中點,連接,則下列結論:①,②,③為等邊三角形,④當時,.請將正確結論的序號填在橫線上__.16.如圖,在等邊△ABC中,AB=4,D是BC的中點,將△ABD繞點A旋轉后得到△ACE,連接DE交AC于點F,則△AEF的面積為_______.三、解答題(共8題,共72分)17.(8分)如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.求證:AE與⊙O相切于點A;若AE∥BC,BC=2,AC=2,求AD的長.18.(8分)如圖,已知是的直徑,點、在上,且,過點作,垂足為.求的長;若的延長線交于點,求弦、和弧圍成的圖形(陰影部分)的面積.19.(8分)如圖1,已知扇形MON的半徑為,∠MON=90°,點B在弧MN上移動,聯結BM,作OD⊥BM,垂足為點D,C為線段OD上一點,且OC=BM,聯結BC并延長交半徑OM于點A,設OA=x,∠COM的正切值為y.(1)如圖2,當AB⊥OM時,求證:AM=AC;(2)求y關于x的函數關系式,并寫出定義域;(3)當△OAC為等腰三角形時,求x的值.20.(8分)為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數進行調查統(tǒng)計.現從該校隨機抽取名學生作為樣本,采用問卷調查的方法收集數據(參與問卷調查的每名學生只能選擇其中一項).并根據調查得到的數據繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:求n的值;若該校學生共有1200人,試估計該校喜愛看電視的學生人數;若調查到喜愛體育活動的4名學生中有3名男生和1名女生,現從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.21.(8分)在平面直角坐標系中,拋物線y=(x﹣h)2+k的對稱軸是直線x=1.若拋物線與x軸交于原點,求k的值;當﹣1<x<0時,拋物線與x軸有且只有一個公共點,求k的取值范圍.22.(10分)如圖,某校數學興趣小組要測量大樓AB的高度,他們在點C處測得樓頂B的仰角為32°,再往大樓AB方向前進至點D處測得樓頂B的仰角為48°,CD=96m,其中點A、D、C在同一直線上.求AD的長和大樓AB的高度(結果精確到2m)參考數據:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,≈2.7323.(12分)如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.(1)求證:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的長.24.如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點D的坐標;(2)點M是拋物線上的動點,設點M的橫坐標為m.①當∠MBA=∠BDE時,求點M的坐標;②過點M作MN∥x軸,與拋物線交于點N,P為x軸上一點,連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題解析:∵函數y=(a為常數)中,-a1-1<0,∴函數圖象的兩個分支分別在二、四象限,在每一象限內y隨x的增大而增大,∵>0,∴y3<0;∵-<-,∴0<y1<y1,∴y3<y1<y1.故選A.2、B【解析】

先證明△ABD≌△EBD,從而可得AD=DE,然后先求得△AEC的面積,繼而可得到△CDE的面積.【詳解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面積為1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故選B.【點睛】本題考查了全等三角形的判定,掌握等高的兩個三角形的面積之比等于底邊長度之比是解題的關鍵.3、A【解析】試題分析:原方程變形為:x(x-1)=0x1=0,x1=1.故選A.考點:解一元二次方程-因式分解法.4、C【解析】分析:直接利用冪的乘方運算法則以及同底數冪的除法運算法則、單項式乘以單項式和合并同類項法則.詳解:A、(b2)3=b6,故此選項錯誤;B、x3÷x3=1,故此選項錯誤;C、5y3?3y2=15y5,正確;D、a+a2,無法計算,故此選項錯誤.故選C.點睛:此題主要考查了冪的乘方運算以及同底數冪的除法運算、單項式乘以單項式和合并同類項,正確掌握相關運算法則是解題關鍵.5、B【解析】分析:由于點P在運動中保持∠APD=90°,所以點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.詳解:由于點P在運動中保持∠APD=90°,∴點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故選B.點睛:本題主要考查的是圓的相關知識和勾股定理,屬于中等難度的題型.解決這個問題的關鍵是根據圓的知識得出點P的運動軌跡.6、B【解析】如圖,分別過K、H作AB的平行線MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故選B.7、A【解析】

用科學記數法表示較大的數時,一般形式為a×10n,其中1≤|a|<10,n為整數,據此判斷即可.【詳解】39000000000=3.9×1.故選A.【點睛】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.8、C【解析】試題分析:已知,△ABE向右平移2cm得到△DCF,根據平移的性質得到EF=AD=2cm,AE=DF,又因△ABE的周長為16cm,所以AB+BC+AC=16cm,則四邊形ABFD的周長=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案選C.考點:平移的性質.9、C【解析】試題分析:絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10﹣n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.所以0.0000105=1.05×10﹣5,故選C.考點:科學記數法.10、A【解析】【分析】根據正視圖是從物體的正面看得到的圖形即可得.【詳解】從正面看可得從左往右2列正方形的個數依次為2,1,如圖所示:故選A.【點睛】本題考查了三視圖的知識,正視圖是從物體的正面看得到的視圖.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

過點B作BD⊥AC于D,設AH=BC=2x,根據等腰三角形三線合一的性質可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根據三角形的面積列方程求出BD,然后根據銳角的正弦=對邊:斜邊求解即可.【詳解】如圖,過點B作BD⊥AC于D,設AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,根據勾股定理得,AC==x,S△ABC=BC?AH=AC?BD,即?2x?2x=?x?BD,解得BC=x,所以,sin∠BAC=.故答案為.12、.【解析】待定系數法,曲線上點的坐標與方程的關系,反比例函數圖象的對稱性,正方形的性質.【分析】由反比例函數的對稱性可知陰影部分的面積和正好為小正方形面積的,設小正方形的邊長為b,圖中陰影部分的面積等于9可求出b的值,從而可得出直線AB的表達式,再根據點P(2a,a)在直線AB上可求出a的值,從而得出反比例函數的解析式:∵反比例函數的圖象關于原點對稱,∴陰影部分的面積和正好為小正方形的面積.設正方形的邊長為b,則b2=9,解得b=3.∵正方形的中心在原點O,∴直線AB的解析式為:x=2.∵點P(2a,a)在直線AB上,∴2a=2,解得a=3.∴P(2,3).∵點P在反比例函數(k>0)的圖象上,∴k=2×3=2.∴此反比例函數的解析式為:.13、﹣3(x﹣y)1【解析】解:﹣3x1+6xy﹣3y1=﹣3(x1+y1﹣1xy)=﹣3(x﹣y)1.故答案為:﹣3(x﹣y)1.點睛:本題考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式進行二次分解,注意分解要徹底.14、【解析】

先利用等腰直角三角形的性質求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出結論.【詳解】如圖,過點A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵兩個同樣大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根據勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案為-1.【點睛】此題主要考查了勾股定理,等腰直角三角形的性質,正確作出輔助線是解本題的關鍵.15、①③④【解析】

①根據直角三角形斜邊上的中線等于斜邊的一半可判斷①;②先證明△ABM∽△ACN,再根據相似三角形的對應邊成比例可判斷②;③先根據直角三角形兩銳角互余的性質求出∠ABM=∠ACN=30°,再根據三角形的內角和定理求出∠BCN+∠CBM=60°,然后根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠BPN+∠CPM=120°,從而得到∠MPN=60°,又由①得PM=PN,根據有一個角是60°的等腰三角形是等邊三角形可判斷③;④當∠ABC=45°時,∠BCN=45°,進而判斷④.【詳解】①∵BM⊥AC于點M,CN⊥AB于點N,P為BC邊的中點,∴PM=BC,PN=BC,∴PM=PN,正確;②在△ABM與△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,錯誤;③∵∠A=60°,BM⊥AC于點M,CN⊥AB于點N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵點P是BC的中點,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等邊三角形,正確;④當∠ABC=45°時,∵CN⊥AB于點N,∴∠BNC=90°,∠BCN=45°,∵P為BC中點,可得BC=PB=PC,故④正確.所以正確的選項有:①③④故答案為①③④【點睛】本題主要考查了直角三角形斜邊的中線等于斜邊的一半的性質,相似三角形、等邊三角形、等腰直角三角形的判定與性質,等腰三角形三線合一的性質,仔細分析圖形并熟練掌握性質是解題的關鍵.16、【解析】

首先,利用等邊三角形的性質求得AD=2;然后根據旋轉的性質、等邊三角形的性質推知△ADE為等邊三角形,則DE=AD,便可求出EF和AF,從而得到△AEF的面積.【詳解】解:∵在等邊△ABC中,∠B=60o,AB=4,D是BC的中點,∴AD⊥BC,∠BAD=∠CAD=30o,∴AD=ABcos30o=4×=2,根據旋轉的性質知,∠EAC=∠DAB=30o,AD=AE,∴∠DAE=∠EAC+∠CAD=60o,∴△ADE的等邊三角形,∴DE=AD=2,∠AEF=60o,∵∠EAC=∠CAD∴EF=DF=,AF⊥DE∴AF=EFtan60o=×=3,∴S△AEF=EF×AF=××3=.故答案為:.【點睛】本題考查了旋轉的性質,等邊三角形的判定與性質,熟記各性質并求出△ADE是等邊三角形是解題的關鍵.三、解答題(共8題,共72分)17、(1)證明見解析;(2)AD=2.【解析】

(1)如圖,連接OA,根據同圓的半徑相等可得:∠D=∠DAO,由同弧所對的圓周角相等及已知得:∠BAE=∠DAO,再由直徑所對的圓周角是直角得:∠BAD=90°,可得結論;(2)先證明OA⊥BC,由垂徑定理得:,FB=BC,根據勾股定理計算AF、OB、AD的長即可.【詳解】(1)如圖,連接OA,交BC于F,則OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直徑,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE與⊙O相切于點A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.【點睛】本題考查了圓的切線的判定、勾股定理及垂徑定理的應用,屬于基礎題,熟練掌握切線的判定方法是關鍵:有切線時,常?!坝龅角悬c連圓心得半徑,證垂直”.18、(1)OE=;(2)陰影部分的面積為【解析】

(1)由題意不難證明OE為△ABC的中位線,要求OE的長度即要求BC的長度,根據特殊角的三角函數即可求得;(2)由題意不難證明△COE≌△AFE,進而將要求的陰影部分面積轉化為扇形FOC的面積,利用扇形面積公式求解即可.【詳解】解:(1)∵AB是⊙O的直徑,∴∠ACB=90°,∵OE⊥AC,∴OE?//?BC,又∵點O是AB中點,∴OE是△ABC的中位線,∵∠D=60°,∴∠B=60°,又∵AB=6,∴BC=AB·cos60°=3,∴OE=BC=;(2)連接OC,∵∠D=60°,∴∠AOC=120°,∵OF⊥AC,∴AE=CE,=,∴∠AOF=∠COF=60°,∴△AOF為等邊三角形,∴AF=AO=CO,∵在Rt△COE與Rt△AFE中,,∴△COE≌△AFE,∴陰影部分的面積=扇形FOC的面積,∵S扇形FOC==π.∴陰影部分的面積為π.【點睛】本題主要考查圓的性質、全等三角形的判定與性質、中位線的證明以及扇形面積的計算,較為綜合.19、(1)證明見解析;(2).();(3).【解析】分析:(1)先判斷出∠ABM=∠DOM,進而判斷出△OAC≌△BAM,即可得出結論;(2)先判斷出BD=DM,進而得出,進而得出AE=,再判斷出,即可得出結論;(3)分三種情況利用勾股定理或判斷出不存在,即可得出結論.詳解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如圖2,過點D作DE∥AB,交OM于點E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)當OA=OC時.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)當AO=AC時,則∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此種情況不存在.(ⅲ)當CO=CA時,則∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此種情況不存在.即:當△OAC為等腰三角形時,x的值為.點睛:本題是圓的綜合題,主要考查了相似三角形的判定和性質,圓的有關性質,勾股定理,等腰三角形的性質,建立y關于x的函數關系式是解答本題的關鍵.20、(1)50;(2)240;(3).【解析】

用喜愛社會實踐的人數除以它所占的百分比得到n的值;先計算出樣本中喜愛看電視的人數,然后用1200乘以樣本中喜愛看電視人數所占的百分比,即可估計該校喜愛看電視的學生人數;畫樹狀圖展示12種等可能的結果數,再找出恰好抽到2名男生的結果數,然后根據概率公式求解.【詳解】解:(1);(2)樣本中喜愛看電視的人數為(人,,所以估計該校喜愛看電視的學生人數為240人;(3)畫樹狀圖為:共有12種等可能的結果數,其中恰好抽到2名男生的結果數為6,所以恰好抽到2名男生的概率.【點睛】本題考查了列表法與樹狀圖法;利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率,也考查了統(tǒng)計圖.21、(1)k=﹣1;(2)當﹣4<k<﹣1時,拋物線與x軸有且只有一個公共點.【解析】

(1)由拋物線的對稱軸直線可得h,然后再由拋物線交于原點代入求出k即可;(2)先根據拋物線與x軸有公共點求出k的取值范圍,然后再根據拋物線的對稱軸及當﹣1<x<2時,拋物線與x軸有且只有一個公共點,進一步求出k的取值范圍即可.【詳解】解:(1)∵拋物線y=(x﹣h)2+k的對稱軸是直線x=1,∴h=1,把原點坐標代入y=(x﹣1)2+k,得,(2﹣1)2+k=2,解得k=﹣1;(2)∵拋物線y=(x﹣1)2+k與x軸有公共點,∴對于方程(x﹣1)2+k=2,判別式b2﹣4ac=﹣4k≥2,∴k≤2.當x=﹣1時,y=4+k;當x=2時,y=1+k,∵拋物線的對稱軸為x=1,且當﹣1<x<2時,拋物線與x軸有且只有一個公共點,∴4+k>2且1+k<2,解得﹣4<k<﹣1,綜上,當﹣4<k<﹣1時,拋物線與x軸有且只有一個公共點.【點睛】拋物線與一元二次方程的綜合是本題的考點,熟練掌握拋物線的性質是解題的關鍵.22、AD的長約為225m,大樓AB的高約為226m【解析】

首先設大樓AB的高度為xm,在Rt△ABC中利用正切函數的定義可求得,然后根據∠ADB的正切表示出AD的長,又由CD=96m,可得方程,解此方程即可求得答案.【詳解】解:設大樓AB的高度為xm,

在Rt△ABC中,∵∠C=32°,∠BAC=92°,

∴,

在Rt△ABD中,,

∴,

∵CD=AC-AD,CD=96m,

∴,

解得:x≈226,∴

答:大樓AB的高度約為226m,AD的長約為225m.【點睛】本題考查解直角三角形的應用.要求學生能借助仰角構造直角三角形并解直角三角形,注意數形結合思想與方程思想的應用.23、(1)證明見解析;(2).【解析】

(1)由切線的性質可知∠DAB=90°,由直角所對的圓周為90°可知∠ACB=90°,根據同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性質可知∠B=∠OCB,由對頂角的性質可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)題意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論