湖北省黃岡市麻城市思源實(shí)驗(yàn)校2024屆中考猜題數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過點(diǎn)B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為()A.36 B.12 C.6 D.32.如圖是由5個(gè)大小相同的正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.3.小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題,從下列四個(gè)條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個(gè)作為補(bǔ)充條件,使?ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認(rèn)為其中錯(cuò)誤的是()A.①② B.②③ C.①③ D.②④4.如果關(guān)于x的一元二次方程k2x2-(2k+1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根,那么k的取值范圍是()A.k>- B.k>-且 C.k<- D.k-且5.如圖,已知AB∥CD,DE⊥AF,垂足為E,若∠CAB=50°,則∠D的度數(shù)為()A.30° B.40° C.50° D.60°6.一列動(dòng)車從A地開往B地,一列普通列車從B地開往A地,兩車同時(shí)出發(fā),設(shè)普通列車行駛的時(shí)間為x(小時(shí)),兩車之間的距離為y(千米),如圖中的折線表示y與x之間的函數(shù)關(guān)系.下列敘述錯(cuò)誤的是()A.AB兩地相距1000千米B.兩車出發(fā)后3小時(shí)相遇C.動(dòng)車的速度為D.普通列車行駛t小時(shí)后,動(dòng)車到達(dá)終點(diǎn)B地,此時(shí)普通列車還需行駛千米到達(dá)A地7.某廠接到加工720件衣服的訂單,預(yù)計(jì)每天做48件,正好按時(shí)完成,后因客戶要求提前5天交貨,設(shè)每天應(yīng)多做x件才能按時(shí)交貨,則x應(yīng)滿足的方程為()A. B.C. D.8.某經(jīng)銷商銷售一批電話手表,第一個(gè)月以550元/塊的價(jià)格售出60塊,第二個(gè)月起降價(jià),以500元/塊的價(jià)格將這批電話手表全部售出,銷售總額超過了5.5萬(wàn)元.這批電話手表至少有()A.103塊 B.104塊 C.105塊 D.106塊9.今年我市計(jì)劃擴(kuò)大城區(qū)綠地面積,現(xiàn)有一塊長(zhǎng)方形綠地,它的短邊長(zhǎng)為60m,若將短邊增長(zhǎng)到長(zhǎng)邊相等(長(zhǎng)邊不變),使擴(kuò)大后的棣地的形狀是正方形,則擴(kuò)大后的綠地面積比原來增加1600,設(shè)擴(kuò)大后的正方形綠地邊長(zhǎng)為xm,下面所列方程正確的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=160010.下列說法中,正確的個(gè)數(shù)共有()(1)一個(gè)三角形只有一個(gè)外接圓;(2)圓既是軸對(duì)稱圖形,又是中心對(duì)稱圖形;(3)在同圓中,相等的圓心角所對(duì)的弧相等;(4)三角形的內(nèi)心到該三角形三個(gè)頂點(diǎn)距離相等;A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,在Rt△ABC中,AC=4,BC=3,將Rt△ABC以點(diǎn)A為中心,逆時(shí)針旋轉(zhuǎn)60°得到△ADE,則線段BE的長(zhǎng)度為_____.12.分解因式:2x2﹣8=_____________13.電子跳蚤游戲盤是如圖所示的△ABC,AB=AC=BC=1.如果跳蚤開始時(shí)在BC邊的P0處,BP0=2.跳蚤第一步從P0跳到AC邊的P1(第1次落點(diǎn))處,且CP1=CP0;第二步從P1跳到AB邊的P2(第2次落點(diǎn))處,且AP2=AP1;第三步從P2跳到BC邊的P3(第3次落點(diǎn))處,且BP3=BP2;…;跳蚤按照上述規(guī)則一直跳下去,第n次落點(diǎn)為Pn(n為正整數(shù)),則點(diǎn)P2016與點(diǎn)P2017之間的距離為_________.14.把多項(xiàng)式9x3﹣x分解因式的結(jié)果是_____.15.計(jì)算:(a2)2=_____.16.函數(shù)y=2xx+5的自變量x三、解答題(共8題,共72分)17.(8分)手機(jī)下載一個(gè)APP、繳納一定數(shù)額的押金,就能以每小時(shí)0.5到1元的價(jià)格解鎖一輛自行車任意騎行,共享單車為解決市民出行的“最后一公里”難題幫了大忙,人們?cè)谙硎芸萍歼M(jìn)步、共享經(jīng)濟(jì)帶來的便利的同時(shí),隨意停放、加裝私鎖、推車下河、大卸八塊等毀壞共享單車的行為也層出不窮?某共享單車公司一月投入部分自行車進(jìn)入市場(chǎng),一月底發(fā)現(xiàn)損壞率不低于10%,二月初又投入1200輛進(jìn)入市場(chǎng),使可使用的自行車達(dá)到7500輛.一月份該公司投入市場(chǎng)的自行車至少有多少輛?二月份的損壞率為20%,進(jìn)入三月份,該公司新投入市場(chǎng)的自行車比二月份增長(zhǎng)4a%,由于媒體的關(guān)注,毀壞共享單車的行為點(diǎn)燃了國(guó)民素質(zhì)的大討論,三月份的損壞率下降為a%,三月底可使用的自行車達(dá)到7752輛,求a的值.18.(8分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,點(diǎn)D是射線CB上的一個(gè)動(dòng)點(diǎn),△ADE是等邊三角形,點(diǎn)F是AB的中點(diǎn),連接EF.(1)如圖,點(diǎn)D在線段CB上時(shí),①求證:△AEF≌△ADC;②連接BE,設(shè)線段CD=x,BE=y,求y2﹣x2的值;(2)當(dāng)∠DAB=15°時(shí),求△ADE的面積.19.(8分)如圖,在矩形ABCD中,E是邊BC上的點(diǎn),AE=BC,DF⊥AE,垂足為F,連接DE.求證:AB=DF.20.(8分)如圖,點(diǎn)O是△ABC的邊AB上一點(diǎn),⊙O與邊AC相切于點(diǎn)E,與邊BC,AB分別相交于點(diǎn)D,F(xiàn),且DE=EF.求證:∠C=90°;當(dāng)BC=3,sinA=時(shí),求AF的長(zhǎng).21.(8分)太原雙塔寺又名永祚寺,是國(guó)家級(jí)文物保護(hù)單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為“文筆雙塔”,是太原的標(biāo)志性建筑之一,某校社會(huì)實(shí)踐小組為了測(cè)量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標(biāo)桿CD,這時(shí)地面上的點(diǎn)E,標(biāo)桿的頂端點(diǎn)D,舍利塔的塔尖點(diǎn)B正好在同一直線上,測(cè)得EC=4米,將標(biāo)桿CD向后平移到點(diǎn)C處,這時(shí)地面上的點(diǎn)F,標(biāo)桿的頂端點(diǎn)H,舍利塔的塔尖點(diǎn)B正好在同一直線上(點(diǎn)F,點(diǎn)G,點(diǎn)E,點(diǎn)C與塔底處的點(diǎn)A在同一直線上),這時(shí)測(cè)得FG=6米,GC=53米.請(qǐng)你根據(jù)以上數(shù)據(jù),計(jì)算舍利塔的高度AB.22.(10分)為了解某中學(xué)學(xué)生課余生活情況,對(duì)喜愛看課外書、體育活動(dòng)、看電視、社會(huì)實(shí)踐四個(gè)方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì).現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng)).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.由圖中提供的信息,解答下列問題:求n的值;若該校學(xué)生共有1200人,試估計(jì)該校喜愛看電視的學(xué)生人數(shù);若調(diào)查到喜愛體育活動(dòng)的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.23.(12分)(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點(diǎn),于點(diǎn),交于,求的值(3)如圖,中,,為邊的中點(diǎn),于點(diǎn),交于,若,,求.24.如圖,在□ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E在BD的延長(zhǎng)線上,且△EAC是等邊三角形.(1)求證:四邊形ABCD是菱形.(2)若AC=8,AB=5,求ED的長(zhǎng).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】設(shè)△OAC和△BAD的直角邊長(zhǎng)分別為a、b,結(jié)合等腰直角三角形的性質(zhì)及圖象可得出點(diǎn)B的坐標(biāo),根據(jù)三角形的面積公式結(jié)合反比例函數(shù)系數(shù)k的幾何意義以及點(diǎn)B的坐標(biāo)即可得出結(jié)論.
解:設(shè)△OAC和△BAD的直角邊長(zhǎng)分別為a、b,
則點(diǎn)B的坐標(biāo)為(a+b,a﹣b).∵點(diǎn)B在反比例函數(shù)的第一象限圖象上,
∴(a+b)×(a﹣b)=a2﹣b2=1.
∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2.
故選D.點(diǎn)睛:本題主要考查了反比例函數(shù)系數(shù)k的幾何意義、等腰三角形的性質(zhì)以及面積公式,解題的關(guān)鍵是找出a2﹣b2的值.解決該題型題目時(shí),要設(shè)出等腰直角三角形的直角邊并表示出面積,再用其表示出反比例函數(shù)上點(diǎn)的坐標(biāo)是關(guān)鍵.2、B【解析】
找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在主視圖中.【詳解】解:從左面看易得下面一層有2個(gè)正方形,上面一層左邊有1個(gè)正方形.故選:B.【點(diǎn)睛】本題考查了三視圖的知識(shí),左視圖是從物體的左面看得到的視圖.3、B【解析】
A、∵四邊形ABCD是平行四邊形,當(dāng)①AB=BC時(shí),平行四邊形ABCD是菱形,當(dāng)②∠ABC=90°時(shí),菱形ABCD是正方形,故此選項(xiàng)正確,不合題意;B、∵四邊形ABCD是平行四邊形,∴當(dāng)②∠ABC=90°時(shí),平行四邊形ABCD是矩形,當(dāng)AC=BD時(shí),這是矩形的性質(zhì),無法得出四邊形ABCD是正方形,故此選項(xiàng)錯(cuò)誤,符合題意;C、∵四邊形ABCD是平行四邊形,當(dāng)①AB=BC時(shí),平行四邊形ABCD是菱形,當(dāng)③AC=BD時(shí),菱形ABCD是正方形,故此選項(xiàng)正確,不合題意;D、∵四邊形ABCD是平行四邊形,∴當(dāng)②∠ABC=90°時(shí),平行四邊形ABCD是矩形,當(dāng)④AC⊥BD時(shí),矩形ABCD是正方形,故此選項(xiàng)正確,不合題意.故選C.4、B【解析】
在與一元二次方程有關(guān)的求值問題中,必須滿足下列條件:(1)二次項(xiàng)系數(shù)不為零;(2)在有兩個(gè)實(shí)數(shù)根下必須滿足△=b2-4ac≥1.【詳解】由題意知,k≠1,方程有兩個(gè)不相等的實(shí)數(shù)根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故選B.【點(diǎn)睛】本題考查根據(jù)根的情況求參數(shù),熟記判別式與根的關(guān)系是解題的關(guān)鍵.5、B【解析】試題解析:∵AB∥CD,且∴在中,故選B.6、C【解析】
可以用物理的思維來解決這道題.【詳解】未出發(fā)時(shí),x=0,y=1000,所以兩地相距1000千米,所以A選項(xiàng)正確;y=0時(shí)兩車相遇,x=3,所以B選項(xiàng)正確;設(shè)動(dòng)車速度為V1,普車速度為V2,則3(V1+V2)=1000,所以C選項(xiàng)錯(cuò)誤;D選項(xiàng)正確.【點(diǎn)睛】理解轉(zhuǎn)折點(diǎn)的含義是解決這一類題的關(guān)鍵.7、D【解析】
因客戶的要求每天的工作效率應(yīng)該為:(48+x)件,所用的時(shí)間為:,根據(jù)“因客戶要求提前5天交貨”,用原有完成時(shí)間減去提前完成時(shí)間,可以列出方程:.故選D.8、C【解析】試題分析:根據(jù)題意設(shè)出未知數(shù),列出相應(yīng)的不等式,從而可以解答本題.設(shè)這批手表有x塊,550×60+(x﹣60)×500>55000解得,x>104∴這批電話手表至少有105塊考點(diǎn):一元一次不等式的應(yīng)用9、A【解析】試題分析:根據(jù)題意可得擴(kuò)建的部分相當(dāng)于一個(gè)長(zhǎng)方形,這個(gè)長(zhǎng)方形的長(zhǎng)和寬分別為x米和(x-60)米,根據(jù)長(zhǎng)方形的面積計(jì)算法則列出方程.考點(diǎn):一元二次方程的應(yīng)用.10、C【解析】
根據(jù)外接圓的性質(zhì),圓的對(duì)稱性,三角形的內(nèi)心以及圓周角定理即可解出.【詳解】(1)一個(gè)三角形只有一個(gè)外接圓,正確;(2)圓既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,正確;(3)在同圓中,相等的圓心角所對(duì)的弧相等,正確;(4)三角形的內(nèi)心是三個(gè)內(nèi)角平分線的交點(diǎn),到三邊的距離相等,錯(cuò)誤;故選:C.【點(diǎn)睛】此題考查了外接圓的性質(zhì),三角形的內(nèi)心及軸對(duì)稱和中心對(duì)稱的概念,要求學(xué)生對(duì)這些概念熟練掌握.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】
連接CE,作EF⊥BC于F,根據(jù)旋轉(zhuǎn)變換的性質(zhì)得到∠CAE=60°,AC=AE,根據(jù)等邊三角形的性質(zhì)得到CE=AC=4,∠ACE=60°,根據(jù)直角三角形的性質(zhì)、勾股定理計(jì)算即可.【詳解】解:連接CE,作EF⊥BC于F,
由旋轉(zhuǎn)變換的性質(zhì)可知,∠CAE=60°,AC=AE,
∴△ACE是等邊三角形,
∴CE=AC=4,∠ACE=60°,
∴∠ECF=30°,
∴EF=CE=2,
由勾股定理得,CF==,
∴BF=BC-CF=,
由勾股定理得,BE==,
故答案為:.【點(diǎn)睛】本題考查的是旋轉(zhuǎn)變換的性質(zhì)、等邊三角形的判定和性質(zhì),掌握旋轉(zhuǎn)變換對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等、對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角是解題的關(guān)鍵.12、2(x+2)(x﹣2)【解析】
先提公因式,再運(yùn)用平方差公式.【詳解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【點(diǎn)睛】考核知識(shí)點(diǎn):因式分解.掌握基本方法是關(guān)鍵.13、3【解析】∵△ABC為等邊三角形,邊長(zhǎng)為1,根據(jù)跳動(dòng)規(guī)律可知,
∴P0P1=3,P1P2=2,P2P3=3,P3P4=2,…
觀察規(guī)律:當(dāng)落點(diǎn)腳標(biāo)為奇數(shù)時(shí),距離為3,當(dāng)落點(diǎn)腳標(biāo)為偶數(shù)時(shí),距離為2,
∵2017是奇數(shù),
∴點(diǎn)P2016與點(diǎn)P2017之間的距離是3.
故答案為:3.【點(diǎn)睛】考查的是等邊三角形的性質(zhì),根據(jù)題意求出P0P1,P1P2,P2P3,P3P4的值,找出規(guī)律是解答此題的關(guān)鍵.14、x(3x+1)(3x﹣1)【解析】
提取公因式分解多項(xiàng)式,再根據(jù)平方差公式分解因式,從而得到答案.【詳解】9x3-x=x(9x2-1)=x(3x+1)(3x-1),故答案為x(3x+1)(3x-1).【點(diǎn)睛】本題主要考查了因式分解以及平方差公式,解本題的要點(diǎn)在于熟知多項(xiàng)式分解因式的相關(guān)方法.15、a1.【解析】
根據(jù)冪的乘方法則進(jìn)行計(jì)算即可.【詳解】故答案為【點(diǎn)睛】考查冪的乘方,掌握運(yùn)算法則是解題的關(guān)鍵.16、x≠﹣1【解析】
根據(jù)分母不等于2列式計(jì)算即可得解.【詳解】解:根據(jù)題意得x+1≠2,解得x≠﹣1.故答案為:x≠﹣1.【點(diǎn)睛】考查的知識(shí)點(diǎn)為:分式有意義,分母不為2.三、解答題(共8題,共72分)17、(1)7000輛;(2)a的值是1.【解析】
(1)設(shè)一月份該公司投入市場(chǎng)的自行車x輛,根據(jù)損壞率不低于10%,可得不等量關(guān)系:一月初投入的自行車-一月底可用的自行車≥一月?lián)p壞的自行車列不等式求解;(2)根據(jù)三月底可使用的自行車達(dá)到7752輛,可得等量關(guān)系為:(二月份剩余的可用自行車+三月初投入的自行車)×三月份的損耗率=7752輛列方程求解.【詳解】解:(1)設(shè)一月份該公司投入市場(chǎng)的自行車x輛,x﹣(7500﹣110)≥10%x,解得x≥7000,答:一月份該公司投入市場(chǎng)的自行車至少有7000輛;(2)由題意可得,[7500×(1﹣1%)+110(1+4a%)](1﹣a%)=7752,化簡(jiǎn),得a2﹣250a+4600=0,解得:a1=230,a2=1,∵,解得a<80,∴a=1,答:a的值是1.【點(diǎn)睛】本題考查了一元一次不等式和一元二次方程的實(shí)際應(yīng)用,根據(jù)一月底的損壞率不低于10%找出不等量關(guān)系式解答(1)的關(guān)鍵;根據(jù)三月底可使用的自行車達(dá)到7752輛找出等量關(guān)系是解答(2)的關(guān)鍵.18、(1)①證明見解析;②25;(2)為或50+1.【解析】
(1)①在直角三角形ABC中,由30°所對(duì)的直角邊等于斜邊的一半求出AC的長(zhǎng),再由F為AB中點(diǎn),得到AC=AF=5,確定出三角形ADE為等邊三角形,利用等式的性質(zhì)得到一對(duì)角相等,再由AD=AE,利用SAS即可得證;②由全等三角形對(duì)應(yīng)角相等得到∠AEF為直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y關(guān)于x的函數(shù)解析式;(2)分兩種情況考慮:①當(dāng)點(diǎn)在線段CB上時(shí);②當(dāng)點(diǎn)在線段CB的延長(zhǎng)線上時(shí),分別求出三角形ADE面積即可.【詳解】(1)、①證明:在Rt△ABC中,∵∠B=30°,AB=10,∴∠CAB=60°,AC=AB=5,∵點(diǎn)F是AB的中點(diǎn),∴AF=AB=5,∴AC=AF,∵△ADE是等邊三角形,∴AD=AE,∠EAD=60°,∵∠CAB=∠EAD,即∠CAD+∠DAB=∠FAE+∠DAB,∴∠CAD=∠FAE,∴△AEF≌△ADC(SAS);②∵△AEF≌△ADC,∴∠AEF=∠C=90°,EF=CD=x,又∵點(diǎn)F是AB的中點(diǎn),∴AE=BE=y,在Rt△AEF中,勾股定理可得:y2=25+x2,∴y2﹣x2=25.(2)①當(dāng)點(diǎn)在線段CB上時(shí),由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,∴AD2=50,△ADE的面積為;②當(dāng)點(diǎn)在線段CB的延長(zhǎng)線上時(shí),由∠DAB=15°,可得∠ADB=15°,BD=BA=10,∴在Rt△ACD中,勾股定理可得AD2=200+100,綜上所述,△ADE的面積為或.【點(diǎn)睛】此題考查了勾股定理,全等三角形的判定與性質(zhì),以及等邊三角形的性質(zhì),熟練掌握勾股定理是解本題的關(guān)鍵.19、詳見解析.【解析】
根據(jù)矩形性質(zhì)推出BC=AD=AE,AD∥BC,根據(jù)平行線性質(zhì)推出∠DAE=∠AEB,根據(jù)AAS證出△ABE≌△DFA即可.【詳解】證明:在矩形ABCD中∵BC=AD,AD∥BC,∠B=90°,
∴∠DAF=∠AEB,
∵DF⊥AE,AE=BC=AD,
∴∠AFD=∠B=90°,
在△ABE和△DFA中
∵
∠AFD=∠B,∠DAF=∠AEB
,AE=AD
∴△ABE≌△DFA(AAS),
∴AB=DF.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)有矩形的性質(zhì),全等三角形的判定與性質(zhì),平行線的性質(zhì).解決本題的關(guān)鍵在于能夠找到證明三角形全等的有關(guān)條件.20、(1)見解析(2)【解析】
(1)連接OE,BE,因?yàn)镈E=EF,所以=,從而易證∠OEB=∠DBE,所以O(shè)E∥BC,從可證明BC⊥AC;(2)設(shè)⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=從而可求出r的值.【詳解】解:(1)連接OE,BE,∵DE=EF,∴=∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O與邊AC相切于點(diǎn)E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=,∴AB=5,設(shè)⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=∴∴【點(diǎn)睛】本題考查圓的綜合問題,涉及平行線的判定與性質(zhì),銳角三角函數(shù),解方程等知識(shí),綜合程度較高,需要學(xué)生靈活運(yùn)用所學(xué)知識(shí).21、55米【解析】
由題意可知△EDC∽△EBA,△FHC∽△FBA,根據(jù)相似三角形的性質(zhì)可得,又DC=HG,可得,代入數(shù)據(jù)即可求得AC=106米,再由即可求得AB=55米.【詳解】∵△EDC∽△EBA,△FHC∽△FBA,,,,即,∴AC=106米,又,∴,∴AB=55米.答:舍利塔的高度AB為55米.【點(diǎn)睛】本題考查相似三角形的判定和性質(zhì)的應(yīng)用,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,利用相似三角形的性質(zhì)建立方程解決問題.22、(1)50;(2)240;(3).【解析】
用喜愛社會(huì)實(shí)踐的人數(shù)除以它所占的百分比得到n的值;先計(jì)算出樣本中喜愛看電視的人數(shù),然后用1200乘以樣本中喜愛看電視人數(shù)所占的百分比,即可估計(jì)該校喜愛看電視的學(xué)生人數(shù);畫樹狀圖展示12種等可能的結(jié)果數(shù),再找出恰好抽到2名男生的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1);(2)樣本中喜愛看電視的人數(shù)為(人,,所以估計(jì)該校喜愛看電視的學(xué)生人數(shù)為240人;(3)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中恰好抽到2名男生的結(jié)果數(shù)為6,所以恰好抽到2名男生的概率.【點(diǎn)睛】本題考查了列表法與樹狀圖法;利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率,也考查了統(tǒng)計(jì)圖.23、(1)相等,理由見解析;(2)2;(3).【解析】
(1)先判斷出AB=AD,再利用同角的余角相等,判斷出∠ABF=∠DAE,進(jìn)而得出△ABF≌△DAE,即可得出結(jié)論;
(2)構(gòu)造出正方形,同(1)的方法得出△ABD≌△CBG,進(jìn)而得出CG=AB,再判斷出△AFB∽△CFG,即可得出結(jié)論;
(3)先構(gòu)造出矩形,同(1)的方法得,∠BAD=∠CBP,進(jìn)而判斷出△ABD∽△BCP,即可求出CP,再同(2)的方法判斷出△CFP∽△AFB,建立方程即可得出結(jié)論.【詳解】解:(1)BF=AE,理由:
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=∠D=90°,
∴∠BAE+∠DAE=90°,
∵AE⊥BF,
∴∠BAE+∠ABF=90°,
∴∠ABF=∠DAE,
在△ABF和△DAE中,∴△ABF≌△DAE,
∴BF=AE,(2)
評(píng)論
0/150
提交評(píng)論