滬科版九上《解直角三角形》 _第1頁
滬科版九上《解直角三角形》 _第2頁
滬科版九上《解直角三角形》 _第3頁
滬科版九上《解直角三角形》 _第4頁
滬科版九上《解直角三角形》 _第5頁
已閱讀5頁,還剩115頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

11第一部分整章分析································································2第1課時正切································································5第1課時解直角三角形····················································27第5課時平面直角坐標(biāo)系中的直線與x軸的夾角····················46第23章綜合評價···································································5622第一部分整章分析一、課標(biāo)要求1、利用相似的直角三角形,探索并認(rèn)識銳角三角函數(shù)(sinA,cosA,tanA)使用計(jì)算器由已知銳角求它的三角函數(shù)值,由已知三角函數(shù)值求它的對應(yīng)銳2、能用銳角三角函數(shù)解直角三角形,能用相關(guān)知識解決一些簡單的實(shí)際問題。二、教材分析1、知識體系33本章內(nèi)容分為兩大部分:第一部分:以實(shí)際問題為背景,并從學(xué)生已有的相似三角形的有關(guān)知識5°,60°角的三角函數(shù)值,以及利用計(jì)算器由已知銳角求出三角函數(shù)值和由一直三角函數(shù)值求對應(yīng)的銳角。第二部分:歸納直角三角形中邊、角之間的關(guān)系,根據(jù)情況選擇恰當(dāng)?shù)姆椒ń庵苯侨切?。能用銳角三角函數(shù)解直角三角形,能用相關(guān)知識解決一些簡單的實(shí)際問題。2、地位與作用本章是《數(shù)學(xué)課程標(biāo)準(zhǔn)》中“圖形與幾何”領(lǐng)域的重要內(nèi)容。從知識體系來看,既是直角三角形和相似型等知識的完善,又是以后學(xué)習(xí)一般三角形的基礎(chǔ),教材在運(yùn)用學(xué)習(xí)過的相似三角形的基礎(chǔ)知識上推出當(dāng)直角三角形的銳角大小確定后,直角三角形的兩邊之比為定值,從而引入銳角三角函數(shù)的概念,進(jìn)一步強(qiáng)化數(shù)與形結(jié)合的思想,并且有利于數(shù)學(xué)知識間的串聯(lián)、延伸;從知識應(yīng)用角度來看,廣泛的應(yīng)用于測量、工程技術(shù)和物理等,常用來計(jì)算距離、高度、角度;從能力提高方面來看,解直角三角形培養(yǎng)學(xué)生的計(jì)算能力,數(shù)形結(jié)合能力,分析問題以及解決實(shí)際問題的能力和應(yīng)用數(shù)學(xué)知識的意識。3、學(xué)情分析在直角三角形的邊角關(guān)系中,三邊之間的關(guān)系、兩銳角之間的關(guān)系比較直接,前面已經(jīng)學(xué)習(xí)過,而對于兩邊的比與一個銳角的關(guān)系,雖然通過銳角三角函數(shù)概念的學(xué)習(xí),學(xué)生能夠很快的掌握。有了一定的基礎(chǔ)以后,但具體的直角三角形中,根據(jù)已知條件,選擇恰當(dāng)?shù)匿J角三角函數(shù),學(xué)生有些困難,易混淆、易出錯。另外,解直角三角形往往需要綜合運(yùn)用勾股定理、銳角三角函數(shù)等知識,具有一定的綜合性,因此具體教學(xué)中要選擇恰當(dāng)?shù)匿J角三角函數(shù),把已知和未知條件聯(lián)系起來。4、學(xué)習(xí)目標(biāo)(1)了解銳角三角函數(shù)(sinA,cosA,tanA)的概念,熟記30°、45°、60°的正弦、余弦和正切的函數(shù)值,并會由一個特殊角的三角函數(shù)值說出這個角。(2)能夠正確地使用計(jì)算器,由已知銳角求它的三角函數(shù)值,由已知三角函數(shù)值求出相應(yīng)的銳角。(3)掌握直角三角形的邊角關(guān)系,會運(yùn)用勾股定理、直角三角形的兩個銳角互余以及銳角三角函數(shù)解直角三角形。(4)會用解直角三角形的有關(guān)知識解決某些實(shí)際問題。(5)通過解直角三角形的學(xué)習(xí),體會數(shù)學(xué)在解決實(shí)際問題中的作用。5、重點(diǎn)和難點(diǎn)重點(diǎn):銳角三角函數(shù)的概念和直角三角形的解法。難點(diǎn):銳角三角函數(shù)的概念。6、主要數(shù)學(xué)思想函數(shù)思想、方程思想、轉(zhuǎn)化思想、數(shù)學(xué)結(jié)合思想三、課時作業(yè)劃分根據(jù)本章的教學(xué)特點(diǎn),課時具體劃分如下:23.1銳角的三角函數(shù)6課時23.2解直角三角形及其應(yīng)用6課時章節(jié)小結(jié)1課時第二部分單元作業(yè)設(shè)計(jì)一、本章作業(yè)目標(biāo):根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》在作業(yè)設(shè)計(jì)中注重以下幾點(diǎn):1、加強(qiáng)對銳角三角函數(shù)及解直角三角形有關(guān)知識的理解和運(yùn)用。2、在解題中,提高學(xué)生的計(jì)算能力。3、通過解直角三角形的學(xué)習(xí),體會數(shù)學(xué)在解決實(shí)際問題中的作用。4、要重視數(shù)學(xué)思想的培養(yǎng),本章內(nèi)容所涉及的數(shù)學(xué)思想和方法主要有數(shù)形結(jié)合思想、方程思想、轉(zhuǎn)化思想等。二、本章作業(yè)整體設(shè)計(jì)思路:根據(jù)本章的內(nèi)容以及“雙減”文件中作業(yè)量的具體要求,設(shè)計(jì)有質(zhì)量的作業(yè),要有一定的思考價值,同時要提高學(xué)生的興趣,一個班級,學(xué)生的水平不同,在設(shè)計(jì)作業(yè)時要考慮這一差異,除了有一些基礎(chǔ)題之外,還有必要設(shè)計(jì)適量的有彈性的題目,滿足不同層次學(xué)生的學(xué)習(xí)需求。還要注意作業(yè)量,讓學(xué)生在規(guī)定的時間內(nèi)能夠完成作業(yè),因此在作業(yè)設(shè)計(jì)中打算從以下幾方面著手:1、題型的豐富性:本章作業(yè)單涵蓋選擇題(2~4題)、填空題(2~4題)、解答題(1~2)題,控制作業(yè)的總量,每節(jié)課后適宜布置20~30分鐘左右的作業(yè)量,在難易程度上、數(shù)量上合理的調(diào)控,讓學(xué)生自主選擇,減輕學(xué)生過重的作業(yè)負(fù)OAB兩個層次或A、B、C三個層次,學(xué)生可根據(jù)自己的實(shí)際情況以及題目的難易程度有彈性的選擇完成;探究型設(shè)計(jì),從單元知識的聯(lián)系上設(shè)計(jì)探究型試題增強(qiáng)大單元意識,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力??鐚W(xué)科等主要突出知識的綜合運(yùn)用和拓展延伸,以及數(shù)學(xué)思想方法的靈活運(yùn)用。2、知識的滾動性:在作業(yè)設(shè)計(jì)中關(guān)注對以往知識的再現(xiàn),讓學(xué)生不僅對新知識進(jìn)行鞏固,也對舊知識進(jìn)行復(fù)習(xí),培養(yǎng)學(xué)生的靈活運(yùn)用知識的能力。3、內(nèi)容的層次性:在作業(yè)內(nèi)容的設(shè)計(jì)上分部分,第一部分基礎(chǔ)題,主要突出對基本概念的理解;第二部分基本概念的基礎(chǔ)上稍稍進(jìn)行變式,重點(diǎn)在于對知識的熟練運(yùn)用;三部分為思維拓展題,例如:“一題多解”型,讓學(xué)生去分析和比較,找出最佳的解題方法,這類作業(yè)可以拓寬學(xué)生的思路,培養(yǎng)他們的創(chuàng)造性思維。4、作業(yè)的針對性。不同學(xué)生的理解能力與學(xué)習(xí)能力有所不同,不同學(xué)生在學(xué)習(xí)相同章節(jié)時所遇到的難點(diǎn)也會有所不同,這就要求教師在設(shè)計(jì)作業(yè)之前充分了解學(xué)生的學(xué)習(xí)情況,根據(jù)學(xué)生實(shí)際進(jìn)行針對性的作業(yè)設(shè)計(jì)。從學(xué)生的實(shí)際學(xué)習(xí)情況出發(fā)設(shè)計(jì)作業(yè),有利于提升數(shù)學(xué)作業(yè)的針對性,充分發(fā)揮作業(yè)的作用。“雙減”不僅僅是要求減少作業(yè)量,更要減量不減質(zhì),因此在布置作業(yè)前,教師一定要將教學(xué)內(nèi)容的重難點(diǎn)劃分出來,然后有針對性地進(jìn)行作業(yè)設(shè)計(jì),促使學(xué)生高效地完成作業(yè),并能通過作業(yè)有所收獲。5、育人價值——立德樹人立德樹人是教育的根本任務(wù),作業(yè)設(shè)計(jì)中蘊(yùn)含著許多德育素材,兼具了本土性和國際性,在解答習(xí)題過程中,使學(xué)生在分析能力、思維能力、情感態(tài)度與價值觀等都能得到發(fā)展與提升。例如:23.2第二課時第1題中體現(xiàn)了本地文化,23.2整理與復(fù)習(xí)第5題“北京冬奧會”提現(xiàn)了民族自豪感,第23章復(fù)習(xí)作業(yè)第12題提現(xiàn)了低碳環(huán)保、綠色出行等育人理念。44第三部分具體實(shí)施23.1銳角的三角函數(shù)第一課時正切作業(yè)目標(biāo):學(xué)生能夠理解銳角的正切的概念,能夠由已知角求它的正切值。了解三角函數(shù)在實(shí)際問題中的應(yīng)用,如:坡度,坡角。通過練習(xí)培養(yǎng)學(xué)生的觀察、分析問題的能力教師評價:一、選擇題AA.B.C.D.()A.?dāng)U大為原來的3倍B.縮小為原來的C.不變D.以上都不對二、填空題AB=BD,則tanD的值為________。4.如圖,在菱形ABCD中,AC=8,tan三BAO=,則菱形ABCD的面積是。_________*請將選擇題、填空題答案寫在以下區(qū)域:1.2.3.4.____________________________________5566三、解答題5.一個斜面的坡度i=1:0.75,如果一個物體從斜面的底部沿著斜面方向前進(jìn)了20米,那么這個物體上升了多少米?6.分層練習(xí)(6-A)如圖,在RtABC中,三ACB=90。,AC=8,BC=6,CD」AB,垂足為D,求tan三BCD的值。(6-B)如圖,在RtABC中,三ACB=90。,CD」AB于點(diǎn)D,已知tanA=,BD=2,求CD的長。(6-C)如圖,將邊長為2的正方形ABCD沿EF和ED折疊,使得B、C兩點(diǎn)折疊后重合于點(diǎn)G,求tan三FEG的值。答案與解析:2.C【分析】:當(dāng)一個銳角的度數(shù)不變時,銳角的正切值也不變。3.2再利用正切的定義求解。【分析】:根據(jù)菱形的性質(zhì)可得AC【分析】:根據(jù)菱形的性質(zhì)可得AC⊥BD,OA=OC=AC=4,OB=OD,再根據(jù)正切函數(shù)的定義求出BD,進(jìn)而可求出菱形的面積;5.16【分析】:直接根據(jù)題意得出直角邊的比值,即可表示出各邊長進(jìn)而得出答46-A.6-B.46-C.【分析】:根據(jù)折疊后重合部分圖形全等,可得BEF≌GEF,DGE≌DCE,則GE=BE=EC=1,再利用同角的余角相等說明三FEG=三EDG,則tan三FEG=G設(shè)計(jì)意圖:本節(jié)練習(xí)我共設(shè)計(jì)了6題,預(yù)計(jì)用時25分鐘左右,設(shè)計(jì)內(nèi)容上主要是讓學(xué)生理解并能靈活運(yùn)用正切的定義,在設(shè)計(jì)中結(jié)合課本及學(xué)習(xí)目標(biāo),有基如:第3題學(xué)生要考慮“直角三角形中30°所對的直角邊是斜邊的一半”找到突破口,第4題通過正切值求出線段的長度,再利用菱形的性質(zhì)求出面積,讓學(xué)生在學(xué)習(xí)新知的同時,了解知識之間的銜接。在設(shè)計(jì)時,第6題解答題,我采用了分層次作業(yè)設(shè)計(jì),主要培養(yǎng)學(xué)生的觀察能力,如(6-A)中,如果學(xué)生仔細(xì)觀察會發(fā)現(xiàn)∠BCD與∠A相等,因此求∠BCD的正切值,可以轉(zhuǎn)化為∠A的正切值,那么可直接利用Rt△ABC求出,當(dāng)然也有學(xué)生利用勾股定理將每條邊都求出,利用或求值。(6-B)、(6-C)與(6-A)是同種類型的問題,當(dāng)直接求某個銳角的正切值困難時,可以用相等的角作為中間量,還可以利用相似,相等的比作為中間量進(jìn)行求值。77作業(yè)情況分析題號題型知識點(diǎn)思維方法與能力水平難度1選擇題正切的定義理解能力、數(shù)形結(jié)合思想A0.912選擇題正切的定義理解能力A0.853填空題直角三角形的性質(zhì)、正切的定義運(yùn)用能力B0.744填空題菱形的性質(zhì)、正切的定義運(yùn)用能力、運(yùn)算能力B0.725解答題坡度問題運(yùn)算能力、分析解決能力A0.876-A解答題正切的定義運(yùn)用、觀察能力、轉(zhuǎn)化思想A0.906-B解答題正切的定義運(yùn)用、觀察能力、轉(zhuǎn)化思想B0.756-C解答題正切的定義、折疊后圖形的特點(diǎn)運(yùn)用、觀察能力、轉(zhuǎn)化思想C0.60評價設(shè)計(jì):評價要素1基本要求答題的規(guī)范性,作業(yè)完成的質(zhì)量,用時知識掌握理解正切的定義,能熟練運(yùn)用正切值,理解坡度、坡角的概念3思維方法能夠通過觀察分析探究更簡單的解題方法8899C.tanA=3第二課時正弦、余弦C.tanA=3作業(yè)目標(biāo):學(xué)生能夠理解銳角的正弦、余弦的概念,能夠由已知銳角求它的正弦、余弦值。通過練習(xí)培養(yǎng)學(xué)生的數(shù)學(xué)結(jié)合思想,提高學(xué)生做題的興趣。教師評價:一、選擇題A.cosA= B.sinA=D.cosB=2.如圖,ABC的頂點(diǎn)都是正方形網(wǎng)格中的格點(diǎn),則sin三ABC的值為()A.C.B.D.3.如圖,在平面直角坐標(biāo)系中,P是第一象限內(nèi)的點(diǎn),其坐標(biāo)是(3,m),若OP與x軸正半軸的夾角α的正切值是4,則sin的值為 ()3A.B.C.D.α二、填空題RtABCC90。,BC=2AC,點(diǎn)D在BC上,且BD=AD,則cos三BAD=_______。5.在RtABC中,三C為銳角,若2AB=AC,則cosC=________。*請將選擇題、填空題答案寫在以下區(qū)域:1.2.3.4.____________________________________5._________三、解答題6.如圖,在ABC中,AD是BC邊上的高,三C=45。,sinB=,AD=1,求BC7.【探索性作業(yè)】用銳角三角函數(shù)說明等腰三角形“等邊對等角”結(jié)論的正確性。答案與解析:【分析】:根據(jù)勾股定理求出AB,三角函數(shù)的定義求相應(yīng)銳角三角函數(shù)值即可判斷。2、B【分析】:找到∠ABC所在的直角三角形,利用勾股定理求得斜邊長,進(jìn)而求得∠ABC的對邊與斜邊之比即可。3、A【分析】:本題已知正切求正弦,可構(gòu)造直角三角形求解。知三ABD=三BAD,在RtABC中利用勾股定理求出AB的【分析】:題目沒確定直角,因此要分類討論,當(dāng)∠A=90°時,當(dāng)∠B=90°時,分別畫出圖形,求出cosC。解:O當(dāng)∠A=90°時,∵2AB=AC,由勾股定理得BC==ABBC5AB5當(dāng)∠B=90°時,∵2AB=AC,由勾股定理得【分析】:先由三角形的高的定義得出∠ADB=∠ADC=90°,再解Rt△ADC,得出DC=1;解Rt△ADB,得出AB=3,根據(jù)勾股定理求出BD=2,然后根據(jù)BC=BD+DC即可求解。設(shè)計(jì)意圖:在這一課時的作業(yè)中我設(shè)計(jì)了7題,預(yù)計(jì)用時23分鐘左右,在設(shè)計(jì)中以基礎(chǔ)知識為主,重點(diǎn)考察銳角三角函數(shù)的定義以及對知識點(diǎn)的靈活運(yùn)用,第2題我設(shè)計(jì)了一個網(wǎng)格題,讓學(xué)生通過觀察制造直角三角形,這題可以從方法多樣。第3題根據(jù)“課本第115頁例3”進(jìn)行變式,使銳角三角函數(shù)與平面直角坐標(biāo)系相結(jié)合。第4題利用等腰三角形的性質(zhì)轉(zhuǎn)化角度求值,這題對于學(xué)生來說難度不大。這節(jié)出錯稍多的是第5題,這題沒有圖形,需要學(xué)生根據(jù)題意自己畫圖,要進(jìn)行綜合考慮,分類討論,意在培養(yǎng)學(xué)生的學(xué)習(xí)能力同時提升了學(xué)生的思維嚴(yán)謹(jǐn)性。兩題解答題,第6題是很簡單的對三角函數(shù)正切和正弦的應(yīng)用,本題意圖讓學(xué)生對銳角三角函數(shù)的概念能夠正確的掌握和運(yùn)用,同時難度不大,讓絕大部分學(xué)生能夠完成。第7題,我設(shè)計(jì)了一題探究型問題,意在引起學(xué)生的興趣,感受知識之間的聯(lián)系,同時打開學(xué)生的思路,拓寬解題方法。作業(yè)情況分析題號題型知識點(diǎn)思維方法與能力水平難度1選擇題義、勾股定理理解A0.922選擇題義、勾股定理理解、觀察能力A0.853選擇題平面直角坐標(biāo)系、銳角三角函數(shù)的定義分析、運(yùn)用A0.814填空題等腰三角形的性質(zhì)、用及勾股定理運(yùn)用B0.725填空題用分類討論思想、數(shù)形結(jié)合思想C0.656解答題用運(yùn)用A0.877解答題用運(yùn)用C0.60評價設(shè)計(jì)評價要素1基本要求答題的規(guī)范性,作業(yè)完成的質(zhì)量,用時知識掌握理解并能熟練運(yùn)用銳角的三角函數(shù),會根據(jù)題目畫出圖形3思維方法能夠通過觀察分析解決問題、數(shù)學(xué)結(jié)合思想的提升三角函數(shù)值會求一些簡單含有特殊角的三角函數(shù)值,通過計(jì)算培養(yǎng)學(xué)生的運(yùn)算能力。教師評價:一、選擇題1.2sin45°的值等于()2.點(diǎn)M(-sin60°,cos60°)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)是()二、填空題2________2________*請將選擇題、填空題答案寫在以下區(qū)域:1.2.3.4.5._____________________________________________三、解答題7.【滲透跨學(xué)科知識】如圖,物理實(shí)驗(yàn)室有一單擺在左右擺動,擺動過程中EcmCD1.4)答案與解析:2.B-y)求出坐標(biāo)點(diǎn)。3.0【分析】:根據(jù)特殊角三角函數(shù)值的混合計(jì)算法則求解即可。4.【分析】:根據(jù)∠A的正弦求出∠A=60°,再根據(jù)30°的正弦值求解即可。5.等腰直角三角形【分析】:根據(jù)非負(fù)數(shù)的意義和特殊銳角的三角函數(shù)值求出∠A和∠B,進(jìn)而確定三角形的形狀。cosAtanB,編ABC是等腰直角三角形【分析】:先計(jì)算特殊角的銳角三角函數(shù)值,再對二次根式進(jìn)行化簡,最后算二次根式的加減。7.擺繩CD的長度為18.6cm分析】:點(diǎn)E、F作EG⊥CD,F(xiàn)H⊥CD,根據(jù)直角三角形的解法解答即可.設(shè)擺繩CD的長度為xcm,則CE=CF=xcm,答:擺繩CD的長度為18.6cm。設(shè)計(jì)意圖:在這一課時的作業(yè)中我設(shè)計(jì)了7題,預(yù)計(jì)用時18分鐘左右,題目主要°角的三角函數(shù)值,在第2題鞏固了平面直角坐標(biāo)系中,關(guān)于坐標(biāo)軸對稱的點(diǎn)的特征,第4題根據(jù)三角函數(shù)值反推∠A的度數(shù),再利用特殊角求三角函數(shù),實(shí)際上是本節(jié)知識的循環(huán)。在最后一題解答題中,我采用了跨學(xué)科設(shè)計(jì),以生活中常見的擺動為主題,讓學(xué)生感知不同學(xué)科知識間的聯(lián)系,增強(qiáng)學(xué)生的整體認(rèn)識。作業(yè)情況分析題號題型知識點(diǎn)思維方法與能力水平難度1選擇題45°的三角函數(shù)值運(yùn)用能力A0.942選擇題平面直角坐標(biāo)系,60°的三角函數(shù)值運(yùn)用能力A0.853填空題特殊角的三角函數(shù)值運(yùn)算能力A0.804填空題銳角三角函數(shù)運(yùn)用能力B0.755填空題平方和絕對值的非負(fù)性,特殊角的三角函數(shù)值運(yùn)用能力B0.706解答題特殊角的三角函數(shù)值運(yùn)用、運(yùn)算能力B0.657解答題用觀察分析能力C0.60評價設(shè)計(jì)評價要素1基本要求答題的規(guī)范性,作業(yè)完成的質(zhì)量,用時2知識掌握理解并能熟記特殊角的三角函數(shù)值素3思維方法能夠通過觀察分析解決問題,提高運(yùn)算能力第四課時互余兩角的三角函數(shù)關(guān)系作業(yè)目標(biāo):理解并掌握互余兩角的三角函數(shù)關(guān)系,能利用這種關(guān)系快速的解決問題。教師評價:一、選擇題A.B.C.D.2.在ABC中,三A、三B是銳角,且有sinA=cosB,則這個三角形是()A.等腰三角形B.直角三角形C.銳角三角形D.等腰直角三角形二、填空題*請將選擇題、填空題答案寫在以下區(qū)域:1._______2._______3._______4._______;_______三、解答題5.已知為直角三角形的一個銳角,若cos=,求sin和sin(90。-)的值。6.分層練習(xí)答案與部分解析:A2.B3.25°【分析】:直接利用互余兩角的三角函數(shù)關(guān)系。2,0.5736【分析】:由題可知α的度數(shù),再根據(jù)特殊角的銳角三角函數(shù)值可求出。6-A.x=y【分析】:利用互余兩角的三角函數(shù)關(guān)系,因?yàn)椤螩=90°,則∠A+∠B=90°,所以sinA=cosB,sinB=cosA。再由等式的性質(zhì),可求出。6-B.證明略【分析】:由題目條件可得出a2+b2=c2,根據(jù)勾股定理的逆定理,可知△ABC為直角三角形,兩條直角邊分別為a,b。對應(yīng)角為∠A、∠B,則∠A與設(shè)計(jì)意圖:本節(jié)課主要是對銳角三角函數(shù)之間的關(guān)系再提升,對于互余的兩個銳角之間正弦、余弦函數(shù)的互換,僅僅用于計(jì)算。因此,在設(shè)計(jì)作業(yè)時,并沒有設(shè)計(jì)較難題目。在練習(xí)中,我共設(shè)計(jì)了6題,預(yù)計(jì)用時15分鐘左右,主要以基礎(chǔ)為主,在做題中要求學(xué)生慢慢轉(zhuǎn)化,夯實(shí)基礎(chǔ)。在第2題中,設(shè)計(jì)一個陷阱,如果學(xué)生對知識點(diǎn)掌握不是很準(zhǔn)確,會誤認(rèn)為∠A=∠B,從而選擇D。在第6題中,學(xué)生要分析題目想到等式的性質(zhì)以及勾股定理的逆定理,以此為突破口解決問題。作業(yè)情況分析題號題型知識點(diǎn)思維方法與能力水平難度1選擇題互余兩角的三角函數(shù)關(guān)系理解應(yīng)用A0.882選擇題互余兩角的三角函數(shù)關(guān)系理解應(yīng)用B0.703填空題互余兩角的三角函數(shù)關(guān)系理解應(yīng)用A0.824填空題互余兩角的三角函數(shù)關(guān)系理解應(yīng)用A0.815解答題互余兩角的三角函數(shù)關(guān)系理解應(yīng)用B0.706-A解答題等式的性質(zhì),互余兩角的三角函數(shù)關(guān)系理解應(yīng)用A0.786-B解答題勾股定理的逆定理、互余兩角的三角函數(shù)關(guān)系理解應(yīng)用B0.65評價設(shè)計(jì):評價要素1基本要求答題的規(guī)范性,作業(yè)完成的質(zhì)量,用時2知識掌握理解并正確利用互余兩角的三角函數(shù)關(guān)系解決問題素3思維方法培養(yǎng)學(xué)生對知識的轉(zhuǎn)化能力第五課時一般銳角的三角函數(shù)值作業(yè)目標(biāo):學(xué)生能夠使用計(jì)算器根據(jù)三角函數(shù)值求一般銳角的度數(shù)。也能根據(jù)度數(shù)求三角函數(shù)值;培養(yǎng)學(xué)生的動手操作能力。教師評價:一、選擇題長,則下列按鍵順序正確的是()確到1°)()A.30°B.37°C.38°D.39°二、填空題BC*請將選擇題、填空題答案寫在以下區(qū)域:1.________2.________3.________;________4.________;________;________三、解答題6.探究性作業(yè):n(1)_____<sin<_____,且sin隨的增大而_____;s(3)_____<tan,且tan隨的增大而_____;(4)根據(jù)以上探究的結(jié)論比較大小:α答案與解析:α【分析】:根據(jù)正切函數(shù)的定義,可得tanB=,根據(jù)計(jì)算器的應(yīng)用,可得答案.2.B3.<<4.13,,67°22′48″;【分析】:利用勾股定理求得AB,再根據(jù)正弦的定義求得tanA,然后用計(jì)求∠A即可;5.75°57′50″【分析】:根據(jù)題意得到tanB的值,再用計(jì)算器求得∠B的值即可.6.(1)0;1;增大(2)0;1;減小(3)0;增大【分析】:在平面之角坐標(biāo)系中,以原點(diǎn)O為圓心,1為半徑作圓,P是第一象限內(nèi)圓上一點(diǎn),OP與x軸的夾角為α,則0°<α<90°.設(shè)P點(diǎn)的坐標(biāo)為 OP1OP1OQxan設(shè)計(jì)意圖:本節(jié)練習(xí)共有6題,預(yù)計(jì)用時15分鐘,主要圍繞利用計(jì)算器解決已知銳角的三角函數(shù)求銳角的度數(shù)問題,通過操作讓學(xué)生進(jìn)一步理解銳角三角函數(shù)的概念,同時培養(yǎng)了學(xué)生的動手操作能力。第6題我設(shè)計(jì)了一個探究性的問題,讓學(xué)生利用計(jì)算器對銳角三角函數(shù)的增減性進(jìn)行探究,有利于調(diào)動學(xué)生的積極性,主動性,使常態(tài)化的作業(yè)變得有趣,而探究的結(jié)論又可作為一種方法,在無計(jì)算器的情況下,能夠快速的對一般的銳角三角函數(shù)值進(jìn)行大小比較。作業(yè)情況分析題號題型知識點(diǎn)思維方法與能力水平難度1選擇題用計(jì)算器根據(jù)三角函數(shù)值求邊長理解應(yīng)用A0.902選擇題用計(jì)算器根據(jù)三角函數(shù)值求度數(shù)理解應(yīng)用A0.883填空題用計(jì)算器比較大小理解應(yīng)用A0.924填空題用計(jì)算器根據(jù)三角函數(shù)值求度數(shù)理解應(yīng)用A0.855解答題用計(jì)算器根據(jù)三角函數(shù)值求度數(shù)理解應(yīng)用A0.836解答題用計(jì)算器探究問題并比較大小理解應(yīng)用B0.65評價設(shè)計(jì)評價要素1基本要求答題的規(guī)范性,作業(yè)完成的質(zhì)量,用時2知識掌握能夠使用計(jì)算器根據(jù)三角函數(shù)值求一般銳角的度數(shù)素3思維方法培養(yǎng)學(xué)生的動手操作能力23.1銳角的三角函數(shù)作業(yè)目標(biāo):對23.1的內(nèi)容整理再鞏固教師評價:一、選擇題AA.0°<∠A<30°B.30°<∠A<60°C.60°<∠A<90°D.30°<∠A<45°3.如圖,在矩形ABCD中,DE⊥AC于E,設(shè)∠ADE=α,且cos=,AB=4,則AD的長為()A.4B.c.D.二、填空題sin45°·cos30°+3tan60°=________.6.如圖,在平面直角坐標(biāo)系系中,直線y=k1x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C點(diǎn)C,與反比例函數(shù)y=2在第一象限內(nèi)的圖象交于點(diǎn)B,連接BO.若xS△OBC=1,tan三BOC=,則k2的值是________.*請將選擇題、填空題答案寫在以下區(qū)域:_________4._________三、解答題2._________5._________3._________6._________7.如圖,已知三MAN,B為邊AM上一點(diǎn).(1)尺規(guī)作圖(要求保留作圖痕跡,不寫作法)BACF①過點(diǎn)B作BCTAM交AN邊于點(diǎn)C;BACF②以AC為邊作ACD=A,且交AB于點(diǎn)D. (2)若AD=3,BD=2,請利用(1)中所作的圖形求sinA的值.8.分層練習(xí)8-A.如圖,將矩形紙片ABCD(AD>DC)的點(diǎn)A沿著過點(diǎn)D的直線折疊,使8-B.如圖,在矩形ABCD中,AB=10,BC=8,E是AD邊上的一點(diǎn),將△ABE(1)求證:△EFD∽△FBC;(2)求tan∠AFB的值.ED65答案與解析:65【分析】:利用互余的兩個銳角的函數(shù)關(guān)系可直接得出。2.B【分析】:根據(jù)銳角三角函數(shù)的增減性,cosA隨度數(shù)的增大而減小。3.C最后在Rt△AED中利用余弦函數(shù)的定義即可求出AD。4.16【分析】:先求出特殊函數(shù)值,再計(jì)算。6.3【分析】:首先根據(jù)直線求得點(diǎn)C的坐標(biāo),然后根據(jù)△BOC的面積求得BD的長,然后利用正切函數(shù)的定義求得OD的長,從而求得點(diǎn)B的坐標(biāo),求得結(jié).∴點(diǎn)C的坐標(biāo)為(0,2),∴點(diǎn)B的坐標(biāo)為(1,3),∵反比例函數(shù)∵反比例函數(shù)y=2在第一象限內(nèi)的圖象交于點(diǎn)B,x∴k2=1×3=3.7.(1)如右圖(2)解:(1)①如圖,直線BC即為所求作.②如圖,射線CD即為所求作.(2)由作圖可知,EF垂直平分線段AC,∴DA=DC=3,D =6∴sinA =6238-A23【分析】:根據(jù)矩形的性質(zhì),可得AD=BC=3,再根據(jù)三角函數(shù)的定義即可求解;DGFGED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,證明FG=FE,故由四邊相等證明四邊形DEFG為菱形; 再利用銳角三角函數(shù)求解即可.解(1)證明:由折疊的性質(zhì)可知:DG=FG,ED=EF,∠1=∠2,∴DG=GF=EF=DE,(2)CD=8,CF=4,矩形ABCD,AB=CD=8,AD=BC設(shè)計(jì)意圖:本次作業(yè)是23.1的小結(jié)練習(xí),因此題目量上比前面較多一些,共8題,預(yù)計(jì)用時30分鐘,在題目設(shè)計(jì)上根據(jù)本節(jié)的學(xué)習(xí)目標(biāo)對知識點(diǎn)在加以鞏固,注重對學(xué)生能力的培養(yǎng),例如第3題邏輯推理能力;第5題運(yùn)算能力;第6題分析問題的能力,第7題動手操作能力等。考察的知識點(diǎn)也比較多,有矩形的折疊問題、相似三角形的性質(zhì)和判定的結(jié)合、一次函數(shù)與反比例函數(shù)的結(jié)合等,讓學(xué)生感受銳角三角函數(shù)在解決邊角問題時的作用。作業(yè)情況分析題號題型知識點(diǎn)思維方法與能力水平難度1選擇題互余兩銳角的三角函數(shù)關(guān)系運(yùn)用能力A0.882選擇題根據(jù)三角函數(shù)判斷銳角的取值范圍理解能力A0.803選擇題勾股定理、矩形的性質(zhì)、銳角的三角函數(shù)理解應(yīng)用A0.754填空題已知余弦求邊長運(yùn)用能力A0.815填空題特殊角的三角函數(shù)值理解、運(yùn)算能力A0.856填空題函數(shù)的綜合、已知正切求邊長理解應(yīng)用B0.657解答題銳角的正弦值理解、操作能力A0.708-A解答題矩形的性質(zhì)、銳角的正弦值理解應(yīng)用A0.848-B解答題勾股定理、矩形的性質(zhì)、相似三角形、銳角的正切值理解應(yīng)用B0.658-C解答題矩形的性質(zhì)、菱形的判定、銳角的正弦值理解應(yīng)用C0.60評價設(shè)計(jì)評價要素1基本要求答題的規(guī)范性,作業(yè)完成的質(zhì)量,用時知識掌握理解銳角三角函數(shù),熟記特殊銳角的三角函數(shù)值,理解并掌握互余兩個銳角的正弦、余弦之間關(guān)系,熟練運(yùn)用計(jì)算器求出銳角的三角函數(shù)值3思維方法通過練習(xí)提高邏輯推理能力、分析問題的能力、動手操作能力等23.2解直角三角形及其應(yīng)用第一課時解直角三角形作業(yè)目標(biāo):在理解解直角三角形定義,直角三角形5個元素間的關(guān)系基礎(chǔ)上,會用勾股定理、直角三角形兩銳角互余及銳角三角函數(shù)解直角三角形。教師評價:一、選擇題為()A.B.A.B.3C.+2D.2ABCD.12或9二、填空題*請將選擇填空題答案寫在以下區(qū)域:1.2.3.4.三、解答題5.根據(jù)下列條件解直角三角形,其中∠C=90°(2)RtABC中,a=24,c=24.6.分層練習(xí)(1)求BC的長;(1)求BC的長;(2)若∠ADC=75°,求CD的長.6-C.某片綠地的形狀如圖所示,其中∠A=60°,AB⊥BC,AD⊥CD,AB=200m,CDmAD,BC的長(精確到1m)。答案與分析:【分析】:利用60°角的正弦、余弦求出兩直角邊,進(jìn)而求得周長。2.C【分析】:由cosB=可得∠B=30°,過點(diǎn)A作BC邊上的高,建立直角三角形從而得解.需要注意的是題目無圖,要想多種情況?!痉治觥窟^點(diǎn)C作AB邊上的高,利用特殊角的三角函數(shù)值從而求得。【分析】過點(diǎn)A作BC邊上的高,建立直角三角形,再利用三角形面積公式從而得解.仍需要注意的是題目無圖,要想多種情況。又∵∠A+∠B=90°(2)∵a=24,c=24,在Rt△ABE中,利用三角函數(shù)求出AE,BE;在Rt△CDE中,利用三角函數(shù)求出CE,DE;設(shè)計(jì)意圖:在這一課時的作業(yè)中我設(shè)計(jì)了6題,預(yù)計(jì)用時25分鐘左右,在設(shè)計(jì)中5題,均為簡單的解直角三角形,屬于基礎(chǔ)題,第2題與第4題屬于雙解問題,在一些幾何題目中,當(dāng)題目中無圖時,需要學(xué)生根據(jù)題意畫出圖形。同時提醒學(xué)生題目無圖相雙解,培養(yǎng)學(xué)生的思維嚴(yán)謹(jǐn)性。在設(shè)計(jì)時,第6題解答題,我采用了分層次作業(yè)設(shè)計(jì),根據(jù)學(xué)生接受能力自主選擇。6-A組,屬于非直角三角形問題,需添加輔助線,進(jìn)而解決。而(6-B組)中,不僅有非解直角三角形,還與相似綜合一起,我設(shè)置成選做。作業(yè)情況分析題號題型知識點(diǎn)思維方法與能力水平難度1選擇題解直角三角形理解運(yùn)用A0.902選擇題解非直角三角形與勾股定理運(yùn)用能力,轉(zhuǎn)化思想A0.853填空題特殊角三角函數(shù)值應(yīng)用A0.864填空題三角函數(shù)、三角形面積公式及勾股定理分類討論B0.655解答題解直角三角形運(yùn)算能力A0.906-A解答題解直角三角形綜合運(yùn)用能力A0.656-B解答題解直角三角形與相似三角形綜合運(yùn)用能力B0.656-C解答題解直角三角形綜合運(yùn)用能力C0.60評價設(shè)計(jì)評價要素1基本要求答題的規(guī)范性,作業(yè)完成的質(zhì)量,用時知識掌握理解解直角三角形的定義,能熟練運(yùn)用勾股定理及銳角三角函數(shù)解直角三角形3思維方法培養(yǎng)學(xué)生會用分類討論思想解決問題第二課時俯角、仰角的應(yīng)用作業(yè)目標(biāo):使學(xué)生掌握仰角、俯角的概念,并學(xué)會正確地運(yùn)用這些概念和解直角三角形的知識解決一些實(shí)際問題。教師評價:一、選擇題1.【本地文化】冬季某天正午時刻,太陽光線從天靜宮老君殿的頂部照射,與水平面所成夾角為a,已知老君殿的高度為23.75米,則其影長為()A.23.75tan議米B.23.75米tan議t2.如圖,小明想要測量學(xué)校操場上旗桿AB的高度,他作了如下操作:(1)度CD=1.2米;(3)量得測角儀到旗桿的水平距離DB=m米.利用銳角三角函數(shù)解直角三角形的知識,旗桿的高度可表示為()二、填空題3.如圖,為了測量河寬AB(假設(shè)河的兩岸平行),在河的彼岸選擇一點(diǎn)A,為________m(結(jié)果保留根號).4.在數(shù)學(xué)實(shí)踐與綜合課上,某興趣小組同學(xué)用航拍無人機(jī)對某居民小區(qū)的1,E的俯角為67°,測得2號樓頂部F的俯角為40°,此時航拍無人機(jī)的高度為60米,已知1號樓的高度為20米,且EC和FD分別垂直地面于點(diǎn)C和D,點(diǎn)B為CD的中點(diǎn),則2號樓的高度為________(結(jié)果精確到0.1)(參考數(shù)據(jù)sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)*請將選擇填空題答案寫在以下區(qū)域:1.2.3.4.三、解答題5.如圖①,南京中山陵的臺階拾級而上被分成坡度不等的兩部分.圖②是AEtan25°≈0.47)6-A.如圖是某貨站傳送貨物的平面示意圖,為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送6-B.如圖是某貨站傳送貨物的平面示意圖,為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送(1)求新傳送帶AC的長度;(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)4 答案與分析【分析】利用正切值的定義。【分析】過C作CF⊥AB于F,則四邊形BFCD是矩形,根據(jù)三角函數(shù)的定義即可得出結(jié)論.【分析】在Rt△ACB中,利用三角函數(shù)求出BC=tanCB,在Rt△ADB中,即可.方法不一.米【分析】通過作輔助線,構(gòu)造直角三角形,利用直角三角形的邊角關(guān)系,分5.【詳解】解:在Rt△BDC中,sinC=inm答:陵墓的垂直高度AE的長為104.3m.答:新傳送帶AC的長度約為5.64m;RtABDBDABcos2(m),∴貨物MNQP需要挪走.設(shè)計(jì)意圖:在這一課時的作業(yè)中我設(shè)計(jì)了6題,預(yù)計(jì)用時25分鐘左右,在設(shè)計(jì)中以基礎(chǔ)知識為主,重點(diǎn)考察解直角三角形的實(shí)際應(yīng)用,第1題,第2題,解決單直角三角形實(shí)際應(yīng)用,其余均為雙直角三角形實(shí)際應(yīng)用,這些題對于學(xué)生來說難度不大,絕大部分學(xué)生能夠完成。本節(jié)作業(yè)計(jì)算量大,部分學(xué)生思路正確,解答錯誤,需多加練習(xí)。在設(shè)計(jì)時,第6題解答題,我采用了分層次作業(yè)設(shè)計(jì),主要培養(yǎng)學(xué)生的應(yīng)用能力,6-A組,是簡單雙直角三角形實(shí)際應(yīng)用.而(6-B組)中,不僅有解直角三角形的實(shí)際應(yīng)用,還需加以比較才能解決。作業(yè)情況分析題號題型知識點(diǎn)思維方法與能力水平難度1選擇題正切的定義理解與應(yīng)用A0.902選擇題解直角三角形的實(shí)際應(yīng)用應(yīng)用能力A0.853填空題等腰三角形與解直角三角形的實(shí)際應(yīng)用應(yīng)用能力A0.864填空題解直角三角形的實(shí)際應(yīng)用應(yīng)用能力B0.655解答題仰角與俯角及解直角三角形實(shí)際應(yīng)用理解與應(yīng)用A0.806-A解答題解直角三角形的實(shí)際應(yīng)用綜合運(yùn)用能力A0.726-B解答題解直角三角形的實(shí)際應(yīng)用綜合運(yùn)用能力B0.65評價設(shè)計(jì)評價要素1基本要求答題的規(guī)范性,作業(yè)完成的質(zhì)量,用時知識掌握會用仰角、俯角知識解決實(shí)際問題3思維方法培養(yǎng)學(xué)生分析問題,解決實(shí)際問題的能力等第三課時解雙直角三角形的應(yīng)用作業(yè)目標(biāo):能利用解直角三角形的知識解一些簡單的實(shí)際問題,發(fā)現(xiàn)雙直角三角形間的關(guān)系,學(xué)會將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題。教師評價:一、選擇題1.如圖所示,九(二)班的同學(xué)準(zhǔn)備在坡角為α的河堤上栽樹,要求相鄰兩棵樹之間的水平距離為8m,那么這兩棵樹在坡面上的距離AB為()A.8cosmC.8sinammmBA則cos=()二、填空題3.小明周末沿著東西走向的公路徒步游玩,在A處觀察到電視塔在北偏東37度的方向上,5分鐘后在B處觀察到電視塔在北偏西53度的方向上.已知電視塔C距度為________(精確到個位,sin370.6,離公路AB的距離為米,則小明的徒步速cos370.8,sin530.8,cos530.6,tan370.75,tan531.3)則AD+DC的最小值為________*請將選擇填空題答案寫在以下區(qū)域:1.2.3.4.三、解答題5.如圖,某樓房AB頂部有一根天線BE,為了測量天線的高度,在地面上取6-A.如圖,為了躲避臺風(fēng),一輪船一直由西向東航行,上午10點(diǎn),在A處里內(nèi)有暗礁,問該輪船是否能一直向東航行?6-B.如圖,已知樓房CD旁邊有一池塘,池塘中有一電線桿BE高10米,在又在池塘對面的A處,觀測到A,E,D在同一直線上時,測得電線桿頂端E(1)求池塘邊A,F(xiàn)兩點(diǎn)之間的距離;(2)求樓房CD的高答案與分析:【分析】運(yùn)用余弦函數(shù)求兩樹在坡面上的距離AB.2.B【分析】根據(jù)tan=設(shè)OA=4k,則OB=3k,AB=5k,從而表示OA=4k-1,可米/分鐘【分析】過C作CD」AB于D,則CD=300米,由解直角三角形求出AD和BD的長度,則求出AB的長度,即可求出小明的速度.4.D【分析】過點(diǎn)C作射線CE,使三BCE=30o,再過動點(diǎn)D作DF」CE,垂足為點(diǎn)F,連接AD,在RtVDFC中,三DCF=30o,DF=DC,AD+CD=AD+DF,當(dāng)A,D,F(xiàn)在同一直線上,即AF」CE時,AD+DF的值最小,最小值等于垂線段AF的長.∴AD=AB=25米,6-A.不能一直向東航行且∠PBD=∠PAB+∠APB,∴PD=BP=15海里<25海里,故若繼續(xù)向東航行則有觸礁的危險,不能一直向東航行.解:如圖:(1)在Rt△ABE中,∠A=30o,BE=10,o∴BF=BE=10,∴△ABE∽△ACD,即答:AF間的距離為(10+10)米,樓房CD的高為(10+5)米.設(shè)計(jì)意圖:本節(jié)練習(xí)我共設(shè)計(jì)了6題,預(yù)計(jì)用時30分鐘左右,設(shè)計(jì)內(nèi)容上主要是讓學(xué)生能利用解直角三角形的知識解一些簡單的實(shí)際問題,在設(shè)計(jì)中結(jié)合課本及學(xué)習(xí)440如:第4題學(xué)生要考慮添加輔助線,利用“垂線段最短”找到突破口,讓學(xué)生在學(xué)習(xí)新知的同時,了解知識之間的銜接。在設(shè)計(jì)時,第6題解答題,我采用了分層次作業(yè)設(shè)計(jì),主要培養(yǎng)學(xué)生的應(yīng)用能力,如(6-A組)中,是課本第127面例5的變式練習(xí).而(6-B組)中,不僅有解直角三角形的實(shí)際應(yīng)用,還與相似相結(jié)合,意在考察學(xué)生的綜合應(yīng)用能力。作業(yè)情況分析題號題型知識點(diǎn)思維方法與能力水平難度1選擇題坡角坡度的掌握及三角函數(shù)的應(yīng)用理解與應(yīng)用A0.902選擇題勾股定理與三角形函數(shù)應(yīng)用B0.653填空題解直角三角形應(yīng)用A0.824填空題垂線段性質(zhì)與解直角三角形應(yīng)用、轉(zhuǎn)化思想C0.555解答題等腰直角三角形性質(zhì)及直角三角形的實(shí)際應(yīng)用理解與應(yīng)用B0.656-A解答題航海、航空問題應(yīng)用B0.656-B解答題直角三角形的實(shí)際應(yīng)用與相似綜合運(yùn)用能力C0.55評價設(shè)計(jì)評價要素1基本要求答題的規(guī)范性,作業(yè)完成的質(zhì)量,用時知識掌握解雙直角三角形問題思維方法提高學(xué)生數(shù)學(xué)應(yīng)用意識和解決實(shí)際問題的能力441第四課時解決建筑工程中的實(shí)際問題作業(yè)目標(biāo):使學(xué)生正確理解坡度、坡角等有關(guān)概念,并弄清它們的意義,同時要求學(xué)生能夠把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,或用所學(xué)的知識解釋、解決生活中的問題,進(jìn)而提高數(shù)學(xué)應(yīng)用意識和解決問題的能力。教師評價:一、選擇題1.如圖,滑雪場有一坡角α為20°的滑雪道,滑雪道AC的長為200米,則滑雪道的坡頂?shù)狡碌状怪备叨華B的長為()A.200tan20°米B.米C.200sin20°米D.200cos20°米2.如圖,傳送帶和地面所成斜坡AB的坡度為1:2,物體從地面沿著該斜坡前進(jìn)了10米,那么物體離地面的高度為()A.5米B.5米C.2米D.4米二、填空題4.如圖,某單位門前原有四級臺階,每級臺階高為18cm,寬為30cm,為方便殘疾人士,擬在門前臺階右側(cè)改成斜坡,設(shè)臺階的起點(diǎn)為A點(diǎn),斜坡的起點(diǎn)為C點(diǎn),準(zhǔn)備設(shè)計(jì)斜坡BC的坡度i=1:5,則AC的長度是cm.*請將選擇題、填空題答案寫在以下區(qū)域:1.2.3.4.________________________________442三、解答題CDAD米,壩高6米,斜坡BC的坡度.求斜坡AD的坡角∠A和壩底寬AB.6.分層練習(xí)6-A.如圖所示的燕服槽是一個等腰梯形,外口AD寬10cm,燕尾槽深10cm,AB的坡比i=1:1,求里口寬BC及燕尾槽的截面積.6-B.為確保我市水庫平安渡汛,水利部門決定對某水庫大壩進(jìn)行加固,加固前大壩的橫截面是梯形ABCD,如圖所示,已知迎水坡面AB的長等于10米,DE的坡度為1:2.(1)求CE的長.(2)已知被加固的大壩長為100米,求需要被填的土石方約為多少立方米?的橫斷面是梯形的防洪大壩,要將大壩加高2米,背水坡坡度改為1:1.5,已知壩頂寬不變,求大壩橫戴面積增加多少平方米?443答案與部分解析:【分析】:根據(jù)正弦的定義進(jìn)行解答即可.∴AB=AC?sin∠C=200sin20°,【分析】:作BC⊥地面于點(diǎn)C,根據(jù)坡度的概念、勾股定理列式計(jì)算即可.【分析】:坡角的正切值即為坡度,由此可求得α的度數(shù).解:由題意,設(shè)坡角α,【分析】:根據(jù)題意求出BH,根據(jù)坡度的概念求出CH,計(jì)算即可.解:由題意得,BH⊥AC,則BH=18×4=72,∴CH=72×5=360,角形和一個矩形,在Rt△AED中利用DE和AD的長,求得線段AE的長和∠A的形,形則CD=FE=5m,CF=ED=6m,AE==6(m),444由條件可得四邊形AEFD是矩形,AD=EF=10,BE,∴里口寬BC=BE+EF+FC=30(厘米),∴截面積為×(10+30)×10=200(平方厘米).∴AF=DH,AD=FH,則AF=AB?sinB=15(米),BF=AB?cosB=5(米),∴CH=22.5(米),EH=30(米),(2)需要被填的土石方=×7.5×15×100=5625(立方米),答:需要被填的土石方約為5625立方米.6-C.大壩橫戴面積增加392平方米.即CG=DH=30m,F(xiàn)M=EN=30+2=32(m),BCDQ和背水坡的坡度都是1:1,∴BG=QH=30m,同理AM=32×1.5=48(m),QN=32m,∴AQ=48+6+32=86(m),BQ=30+6+30=66(m),橫截面面積增加×(6+86)×32﹣×(6+66)×30=392(m2),答:大壩橫戴面積增加392平方米.設(shè)計(jì)意圖:本節(jié)課主要是對銳角三角函數(shù)之間的關(guān)系再提升,對于互余的兩個銳角之間正弦、余弦函數(shù)的互換,僅僅用于計(jì)算。因此,在設(shè)計(jì)作業(yè)時,并沒有設(shè)計(jì)較難題目。在練習(xí)中,我共設(shè)計(jì)了6題,預(yù)計(jì)用時15分鐘左右,主要以基礎(chǔ)為主,在做題中要求學(xué)生慢慢轉(zhuǎn)化,夯實(shí)基礎(chǔ)。在第2題中,設(shè)計(jì)一個陷阱,如果學(xué)生對知識點(diǎn)掌握不是很準(zhǔn)確,會誤認(rèn)為∠A=∠B,從而選擇D。在第6題中,學(xué)生要分析題目想到等式的性質(zhì)以及勾股定理的逆定理,以此為突破口解決問題。作業(yè)情況分析題號題型知識點(diǎn)思維方法與能力水平難度1選擇題坡角的概念理解能力A0.922選擇題坡度的概念應(yīng)用能力A0.913填空題坡角與坡度的應(yīng)用應(yīng)用能力B0.754填空題坡度的綜合應(yīng)用理解運(yùn)用B0.735解答題坡角與坡度的概念理解應(yīng)用B0.786-A解答題坡比的概念應(yīng)用能力A0.926-B解答題坡度的綜合應(yīng)用綜合運(yùn)用B0.716-C解答題坡度的實(shí)際應(yīng)用綜合運(yùn)用C0.59評價設(shè)計(jì):評價要素1基本要求答題的規(guī)范性,作業(yè)完成的質(zhì)量,用時2知識掌握理解并正確利用坡角與坡度的概念解決問題素3思維方法培養(yǎng)學(xué)生對學(xué)生理解及綜合運(yùn)用的能力445446第五課時平面直角坐標(biāo)系中的直線與x軸的夾角作業(yè)目標(biāo):學(xué)生能夠理解平面直角坐標(biāo)系中的直線與x軸的夾角,能夠由平面直角坐標(biāo)系中的直線與x軸的夾角求出正切值,進(jìn)而求出k。也可以通過k求出直線與x軸的夾角,為高中系統(tǒng)學(xué)習(xí)直線的傾斜角與斜率作鋪墊。教師評價:一、選擇題1.直線y=5向上方向與x軸正方向所夾的銳角的是()A.30°B.45°C.60°D.75°0),則cos議的值是()二、填空題3.直線x=2的向上方向與x軸的正方向所夾的角為.4.如右圖,點(diǎn)P在反比例函數(shù)y=的圖象上,且橫坐標(biāo)為1,過點(diǎn)P作兩條坐標(biāo)軸的平行線,與反比例函數(shù)y=(k<0)的圖象相交于點(diǎn)A、B,則直線AB與x軸所夾銳角的正切值為.*請將選擇題、填空題答案寫在以下區(qū)域:1.2.3.4.____________________________________三、解答題5.已知直線y=kx(k>0)經(jīng)過點(diǎn)(-1,2),且向上的方向與x軸正方向所夾的銳6.探索性作業(yè)(請嘗試用不同的方法證明)在學(xué)習(xí)了一次函數(shù)時,通過描點(diǎn)畫圖,直觀的得出正比例函數(shù)y=kx(k>0)的圖象是一條直線.現(xiàn)在,你能對這個結(jié)論給出證明嗎?答案與解析:60°.【分析】:找到AB為斜邊所在的直角三角形,進(jìn)而cosa即可。【分析】:本題用數(shù)形結(jié)合進(jìn)行求解?!痉治觥浚狐c(diǎn)P橫坐標(biāo)為1,則點(diǎn)P(1,3),故直線AB與x軸所夾銳角的正切值為3,故答案為3.【分析】:先求出k的值,然后代入表達(dá)式求b,從而求得直線的表達(dá)式.6、提示:構(gòu)造直角三角形,可以通過三角形相似說明角相等,也可以通過正切值相等說明角相等。證法1設(shè)P1(x1,y1),P2(x2,y2)為y=kx的圖象上的兩點(diǎn)(不與原點(diǎn)重合),因?yàn)樵c(diǎn)O(0,0)在圖象上,連接OP1,OP2,作P1Q1」Qx軸,P2Q2」Ox軸,垂足分別為又這兩個角的頂點(diǎn)和一遍公共,另一邊在公共邊同側(cè),故OP1與OP2重合,即P1與P2與原點(diǎn)O在同一條直線上.447P設(shè)計(jì)意圖:在這一課時的作業(yè)中我設(shè)計(jì)了6題,預(yù)計(jì)用時25分鐘左右,在設(shè)計(jì)中以基礎(chǔ)知識為主,重點(diǎn)考察學(xué)生能夠能夠由平面直角坐標(biāo)系中的直線與x軸的夾角求出正切值,進(jìn)而求出k。也可以通過k求出直線與x軸的夾角,為高中系統(tǒng)學(xué)習(xí)直線的傾斜角與斜率作鋪墊。第1題直接由k的值確定正切值,屬于基礎(chǔ)題。滲透了數(shù)形結(jié)合的思想。第3題根據(jù)作出直線x=2的圖象,利用數(shù)形結(jié)合得到直線與x軸的正方向所夾的角為90°.第4題屬于綜合性的試題,考察學(xué)生應(yīng)用知識的能力。先由點(diǎn)P橫坐標(biāo)為1,一次函數(shù)與反比例函數(shù)的綜合題,滲透了知識之間的聯(lián)系。第5題屬于基礎(chǔ)題,先求出k的值,然后代入表達(dá)式求b,從而求得直線的表達(dá)式.主要考察學(xué)生對基礎(chǔ)知識的掌握。第6題,我設(shè)計(jì)了一題探究型問題,意在激發(fā)學(xué)生的興趣,感受知識之間的聯(lián)系,同時打開學(xué)生的思路,發(fā)散學(xué)生的思維,也為高中系統(tǒng)學(xué)習(xí)直線的傾斜角與斜率作鋪墊。滲透初中與高中知識的聯(lián)系性。448449作業(yè)情況分析題號題型知識點(diǎn)思維方法與能力水平難度1選擇題由k的值確定正切值理解能力A0.912選擇題夾角度數(shù)求三角函數(shù)值應(yīng)用能力B0.753填空題數(shù)形結(jié)合理解、運(yùn)用A0.834填空題一次函數(shù),反比例函數(shù),正切值綜合運(yùn)用C0.605解答題由角度確定k的值應(yīng)用能力A0.856解答題三點(diǎn)共線的證明方法綜合運(yùn)用C0.60評價設(shè)計(jì)評價要素1基本要求答題的規(guī)范性,作業(yè)完成的質(zhì)量,用時2知識掌握理解并能熟練運(yùn)用由k的值確定正切值及夾角度數(shù)求三角函數(shù)值,明確本課知識與一次函數(shù)和反比例函數(shù)之間的聯(lián)系素3思維方法能夠通過分析解決問題、理解能力和應(yīng)用能力得到提升23.2銳角的三角函數(shù)作業(yè)目標(biāo):對23.2的內(nèi)容整理再鞏固教師評價:一、選擇題1.下列條件中,不能解直角三角形的是()A.已知兩銳角B.已知兩條邊C.已知三邊D.已知一邊和一銳角A.msin40°B.mcos40°C.mtan40°D.3.如圖,小軍測量一棵樹的高度,已知他看樹的頂端的仰角是30度,與樹之間的水平距離BE為6m,AB為1.5m(即小軍的眼睛距地面的距離),那么這棵樹高是()米A.2+B.4.5CD二、填空題4.如圖,在平面直角坐標(biāo)系中,∠α是直線OA與x軸相交所成的銳角,且5.【關(guān)注熱點(diǎn)】北京冬奧會雪上項(xiàng)目競賽場地“首鋼滑雪大跳臺”巧妙地融入了敦煌壁畫“飛天”元素.如圖,賽道剖面圖的一部分可抽象為線段AB.已知m.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)6.如圖,勘探隊(duì)員朝一座山行走,在前后A、B兩處測量山頂?shù)难鼋欠謩e是30°和45°,兩個測量點(diǎn)之間的距離是100m,則此山的高度CD為m.*請將選擇題、填空題答案寫在以下區(qū)域:1.2.3.4.5.6.___________________________________________三、解答題8-A.一貨輪在A處測得燈塔P在貨輪的北偏西23°的方向上,隨后貨輪以80海里/時的速度按北偏東30°的方向航行,1小時后到達(dá)B處,此時又測得燈塔P在貨輪的北偏西60°的方向上,求此時貨輪距燈塔P的距離(參考數(shù)據(jù):sin53°(1)求∠ACB的度數(shù);(2)一輪船從B地出發(fā)向北偏西50°方向勻速行駛,5h后到達(dá)C地,求輪船的速度.8-C.如圖,小明想知道湖中兩個小亭A、B之間的距離,他在與小亭A、B位于同根據(jù)以上數(shù)據(jù),請你幫助小明在圖中畫出求湖中兩個小亭A、B之間距離的示意圖,標(biāo)出相關(guān)條件和求解過程中相關(guān)線段的長度,并直接寫出兩個小亭A、B之間距離.答案與解析:A【分析】:在直角三角形中,除了直角外,其余5個元素只要知道2個(至少有一條邊)就可以求出其余3個,不能解直角三角形的是A.2.A【分析】:利用40°的正弦值進(jìn)行計(jì)算即可解答。3.A【分析】:根據(jù)正切的概念求出CD,計(jì)算即可。4.y=x【分析】:設(shè)該直線上有一定P(a、b),則tan===k.設(shè)該直線的方程是y=kx所以,該直線的解析式為y=x故答案是:y=x【分析】:先求出特殊函數(shù)值,再計(jì)算。分析:設(shè)CD=x,根據(jù)正切的定義分別用x表示出AD、BD,根據(jù)題意列出方程,解方程得到答案.故答案為:50(+1).7.AD=2AB10,∴AC=AB2BC2=10262=8,3208-A.3海里∵AB=80×1=80(海里),∴PB=AB?tan53°=80×=海里,答:此時貨輪距燈塔P的距離為海里8-B.∠ACB=70°;輪船的速度為15km/h.8-C.兩個小亭A、B之間距離為2039米【分析】:如圖:過點(diǎn)A作AH」BQ,垂足為H,在RtAMN中,在RtBMQ中,:BH=BQHQ=70米,設(shè)計(jì)意圖:本次作業(yè)是23.2的小結(jié)練習(xí),因此題目量上比前面較多一些,共8題,預(yù)計(jì)用時30分鐘,在題目設(shè)計(jì)上根據(jù)本節(jié)的學(xué)習(xí)目標(biāo)對知識點(diǎn)在加以鞏固,注重想,第8-B題轉(zhuǎn)化思想。本練習(xí)考察的知識點(diǎn)也比較多,有本節(jié)學(xué)習(xí)的新的知識點(diǎn)銳角三角函數(shù)的概念、坡度、坡角、仰角、俯角、方向角,還有以前學(xué)習(xí)的勾股定理、待定系數(shù)法求正比例函數(shù)的解析式、平角的定義、讓學(xué)生感受知識之間的練習(xí)。作業(yè)情況分析題號題型知識點(diǎn)思維方法與能力水平難度1選擇題解直角三角形的條件理解能力A0.892選擇題弦、余弦、正切理解能力A0.863選擇題解直角三角形的應(yīng)用轉(zhuǎn)化思想A0.794填空題待定系數(shù)法求正比例函數(shù)的解析式、銳角三角形函數(shù)的定義函數(shù)思想A0.845填空題解直角三角形的應(yīng)用—坡度坡角問題轉(zhuǎn)化思想A0.866填空題解直角三角形的應(yīng)方程思想B0.757解答題直角三角形的性質(zhì)、正弦的定義、勾股定理理解、應(yīng)用能力A0.808-A解答題方向角的含義,平角的定義綜合應(yīng)用能力A0.818-B解答題方向角問題以及等腰三角形的判定轉(zhuǎn)化思想B0.728-C解答題解直角三角形的應(yīng)用—方向角問題構(gòu)造直角三角形建立模型C0.60評價設(shè)計(jì):評價要素1基本要求答題的規(guī)范性,作業(yè)完成的質(zhì)量,用時2知識掌握理解并掌握直角三角形的條件,能熟練的解答解直角三角形的應(yīng)用—坡度坡角問題和解直角三角形的應(yīng)用—方向角問題,熟練運(yùn)用計(jì)算器求出銳角的三角函數(shù)值素3思維方法通過練習(xí)鞏固函數(shù)思想、轉(zhuǎn)化思想、數(shù)形結(jié)合思想等作業(yè)目標(biāo):對第23章的內(nèi)容整理再鞏固教師評價:三、選擇題則tanA的值是()A.B.C.D.2.如圖,一座廠房

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論