云南省會曲靖市會澤縣第一中學2024屆高考壓軸卷數學試卷含解析_第1頁
云南省會曲靖市會澤縣第一中學2024屆高考壓軸卷數學試卷含解析_第2頁
云南省會曲靖市會澤縣第一中學2024屆高考壓軸卷數學試卷含解析_第3頁
云南省會曲靖市會澤縣第一中學2024屆高考壓軸卷數學試卷含解析_第4頁
云南省會曲靖市會澤縣第一中學2024屆高考壓軸卷數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省會曲靖市會澤縣第一中學2024屆高考壓軸卷數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知中內角所對應的邊依次為,若,則的面積為()A. B. C. D.2.過直線上一點作圓的兩條切線,,,為切點,當直線,關于直線對稱時,()A. B. C. D.3.已知,,,則()A. B. C. D.4.的展開式中的系數是()A.160 B.240 C.280 D.3205.“是函數在區(qū)間內單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.已知若(1-ai)(3+2i)為純虛數,則a的值為()A. B. C. D.7.已知函數的圖象的一條對稱軸為,將函數的圖象向右平行移動個單位長度后得到函數圖象,則函數的解析式為()A. B.C. D.8.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.9.已知與之間的一組數據:12343.24.87.5若關于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.510.若,則實數的大小關系為()A. B. C. D.11.已知函數,若有2個零點,則實數的取值范圍為()A. B. C. D.12.已知,則()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知向量滿足,,則______________.14.某商場一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中正確的是______.①2至3月份的收入的變化率與11至12月份的收入的變化率相同;②支出最高值與支出最低值的比是6:1;③第三季度平均收入為50萬元;④利潤最高的月份是2月份.15.設為橢圓在第一象限上的點,則的最小值為________.16.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若不等式對任意實數恒成立,求實數的取值范圍.18.(12分)已知函數.(1)若在處導數相等,證明:;(2)若對于任意,直線與曲線都有唯一公共點,求實數的取值范圍.19.(12分)已知直線l的極坐標方程為,圓C的參數方程為(為參數).(1)請分別把直線l和圓C的方程化為直角坐標方程;(2)求直線l被圓截得的弦長.20.(12分)已知函數,當時,有極大值3;(1)求,的值;(2)求函數的極小值及單調區(qū)間.21.(12分)已知的內角的對邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長是否有最大值?如果有,求出這個最大值,如果沒有,請說明理由.22.(10分)如圖,在四棱錐中,側棱底面,,,,,是棱中點.(1)已知點在棱上,且平面平面,試確定點的位置并說明理由;(2)設點是線段上的動點,當點在何處時,直線與平面所成角最大?并求最大角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由余弦定理可得,結合可得a,b,再利用面積公式計算即可.【詳解】由余弦定理,得,由,解得,所以,.故選:A.【點睛】本題考查利用余弦定理解三角形,考查學生的基本計算能力,是一道容易題.2、C【解析】

判斷圓心與直線的關系,確定直線,關于直線對稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質求出,得,從而得.【詳解】如圖,設圓的圓心為,半徑為,點不在直線上,要滿足直線,關于直線對稱,則必垂直于直線,∴,設,則,,∴,.故選:C.【點睛】本題考查直線與圓的位置關系,考查直線的對稱性,解題關鍵是由圓的兩條切線關于直線對稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.3、B【解析】

利用指數函數和對數函數的單調性,將數據和做對比,即可判斷.【詳解】由于,,故.故選:B.【點睛】本題考查利用指數函數和對數函數的單調性比較大小,屬基礎題.4、C【解析】

首先把看作為一個整體,進而利用二項展開式求得的系數,再求的展開式中的系數,二者相乘即可求解.【詳解】由二項展開式的通項公式可得的第項為,令,則,又的第為,令,則,所以的系數是.故選:C【點睛】本題考查二項展開式指定項的系數,掌握二項展開式的通項是解題的關鍵,屬于基礎題.5、C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數圖像的畫法.6、A【解析】

根據復數的乘法運算法則化簡可得,根據純虛數的概念可得結果.【詳解】由題可知原式為,該復數為純虛數,所以.故選:A【點睛】本題考查復數的運算和復數的分類,屬基礎題.7、C【解析】

根據輔助角公式化簡三角函數式,結合為函數的一條對稱軸可求得,代入輔助角公式得的解析式.根據三角函數圖像平移變換,即可求得函數的解析式.【詳解】函數,由輔助角公式化簡可得,因為為函數圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數的圖象向右平行移動個單位長度可得,則,故選:C.【點睛】本題考查了輔助角化簡三角函數式的應用,三角函數對稱軸的應用,三角函數圖像平移變換的應用,屬于中檔題.8、D【解析】

根據面面關系判斷A;根據否定的定義判斷B;根據充分條件,必要條件的定義判斷C;根據逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯誤;命題“:,”的否定為:,,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.9、D【解析】

利用表格中的數據,可求解得到代入回歸方程,可得,再結合表格數據,即得解.【詳解】利用表格中數據,可得又,.解得故選:D【點睛】本題考查了線性回歸方程過樣本中心點的性質,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.10、A【解析】

將化成以為底的對數,即可判斷的大小關系;由對數函數、指數函數的性質,可判斷出與1的大小關系,從而可判斷三者的大小關系.【詳解】依題意,由對數函數的性質可得.又因為,故.故選:A.【點睛】本題考查了指數函數的性質,考查了對數函數的性質,考查了對數的運算性質.兩個對數型的數字比較大小時,底數相同,則構造對數函數,結合對數的單調性可判斷大??;若真數相同,則結合對數函數的圖像或者換底公式可判斷大?。蝗粽鏀岛偷讛刀疾幌嗤?,則可與中間值如1,0比較大小.11、C【解析】

令,可得,要使得有兩個實數解,即和有兩個交點,結合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數解,即和有兩個交點,,令,可得,當時,,函數在上單調遞增;當時,,函數在上單調遞減.當時,,若直線和有兩個交點,則.實數的取值范圍是.故選:C.【點睛】本題主要考查了根據零點求參數范圍,解題關鍵是掌握根據零點個數求參數的解法和根據導數求單調性的步驟,考查了分析能力和計算能力,屬于中檔題.12、B【解析】

結合求得的值,由此化簡所求表達式,求得表達式的值.【詳解】由,以及,解得..故選:B【點睛】本小題主要考查利用同角三角函數的基本關系式化簡求值,考查二倍角公式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

首先根據向量的數量積的運算律求出,再根據計算可得;【詳解】解:因為,所以又所以所以故答案為:【點睛】本題考查平面向量的數量積的運算,屬于基礎題.14、①②③【解析】

通過圖片信息直接觀察,計算,找出答案即可.【詳解】對于①,2至月份的收入的變化率為20,11至12月份的變化率為20,故相同,正確.對于②,支出最高值是2月份60萬元,支出最低值是5月份的10萬元,故支出最高值與支出最低值的比是6:1,正確.對于③,第三季度的7,8,9月每個月的收入分別為40萬元,50萬元,60萬元,故第三季度的平均收入為50萬元,正確.對于④,利潤最高的月份是3月份和10月份都是30萬元,高于2月份的利潤是80﹣60=20萬元,錯誤.故答案為①②③.【點睛】本題考查利用圖象信息,分析歸納得出正確結論,屬于基礎題目.15、【解析】

利用橢圓的參數方程,將所求代數式的最值問題轉化為求三角函數最值問題,利用兩角和的正弦公式和三角函數的性質,以及求導數、單調性和極值,即可得到所求最小值.【詳解】解:設點,,其中,,由,,,可設,導數為,由,可得,可得或,由,,可得,即,可得,由可得函數遞減;由,可得函數遞增,可得時,函數取得最小值,且為,則的最小值為1.故答案為:1.【點睛】本題考查橢圓參數方程的應用,利用三角函數的恒等變換和導數法求函數最值的方法,考查化簡變形能力和運算能力,屬于難題.16、【解析】

由,求出長度關系,利用角平分線以及面積關系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點睛】本題考查共線向量的應用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)分三種情況討論,分別求解不等式組,然后求并集即可得不等式的解集;(Ⅱ)根據絕對值不等式的性質可得,不等式對任意實數恒成立,等價于,解不等式即可求的取值范圍.試題解析:(Ⅰ)當時,即,①當時,得,所以;②當時,得,即,所以;③當時,得成立,所以.故不等式的解集為.(Ⅱ)因為,由題意得,則,解得,故的取值范圍是.18、(I)見解析(II)【解析】

(1)由題x>0,,由f(x)在x=x1,x2(x1≠x2)處導數相等,得到,得,由韋達定理得,由基本不等式得,得,由題意得,令,則,令,,利用導數性質能證明.(2)由得,令,利用反證法可證明證明恒成立.由對任意,只有一個解,得為上的遞增函數,得,令,由此可求的取值范圍..【詳解】(I)令,得,由韋達定理得即,得令,則,令,則,得(II)由得令,則,,下面先證明恒成立.若存在,使得,,,且當自變量充分大時,,所以存在,,使得,,取,則與至少有兩個交點,矛盾.由對任意,只有一個解,得為上的遞增函數,得,令,則,得【點睛】本題考查函數的單調性,導數的運算及其應用,同時考查邏輯思維能力和綜合應用能力屬難題.19、(1).x2+y2=1.(2)16【解析】

(1)直接利用極坐標方程和參數方程公式化簡得到答案.(2)圓心到直線的距離為,故弦長為得到答案.【詳解】(1),即,即,即.,故.(2)圓心到直線的距離為,故弦長為.【點睛】本題考查了極坐標方程和參數方程,圓的弦長,意在考查學生的計算能力和轉化能力.20、(1);(2)極小值為,遞減區(qū)間為:,遞增區(qū)間為.【解析】

(1)由題意得到關于實數的方程組,求解方程組,即可求得的值;(2)結合(1)中的值得出函數的解析式,即可利用導數求得函數的單調區(qū)間和極小值.【詳解】(1)由題意,函數,則,由當時,有極大值,則,解得.(2)由(1)可得函數的解析式為,則,令,即,解得,令,即,解得或,所以函數的單調減區(qū)間為,遞增區(qū)間為,當時,函數取得極小值,極小值為.當時,有極大值3.【點睛】本題主要考查了函數的極值的概念,以及利用導數求解函數的單調區(qū)間和極值,其中解答中熟記函數的極值的概念,以及函數的導數與原函數的關系,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.21、(Ⅰ);(Ⅱ)有最大值,最大值為3.【解析】

(Ⅰ)利用正弦定理將角化邊,再由余弦定理計算可得;(Ⅱ)由正弦定理可得,則,再根據正弦函數的性質計算可得;【詳解】(Ⅰ)由得再由正弦定理得因此,又因為,所以.(Ⅱ)當時,的周長有最大值,且最大值為3,理由如下:由正弦定理得,所以,所以.因為,所以,所以當即時,取到最大值2,所以的周長有最大值,最大值為3.【點睛】本題考查正弦定理、余弦定理解三角形,以及三角函數的性質的應用,屬于中檔題.22、(1)為中點,理由見解析;(2)當點在線段靠近的三等分點時,直線與平面所成角最大,最大角的正弦值.【解析】

(1)為中點,可利用中位線與平行四邊形性質證明,,從而證明平面平面;(2)以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論