版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省濟寧市田家炳中學2024屆畢業(yè)升學考試模擬卷數(shù)學卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.下面四個幾何體中,左視圖是四邊形的幾何體共有()A.1個 B.2個 C.3個 D.4個2.如圖,從圓外一點引圓的兩條切線,,切點分別為,,如果,,那么弦AB的長是()A. B. C. D.3.如圖,A(4,0),B(1,3),以OA、OB為邊作□OACB,反比例函數(shù)(k≠0)的圖象經(jīng)過點C.則下列結論不正確的是()A.□OACB的面積為12B.若y<3,則x>5C.將□OACB向上平移12個單位長度,點B落在反比例函數(shù)的圖象上.D.將□OACB繞點O旋轉180°,點C的對應點落在反比例函數(shù)圖象的另一分支上.4.如圖,直線AB與?MNPQ的四邊所在直線分別交于A、B、C、D,則圖中的相似三角形有()A.4對B.5對C.6對D.7對5.如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D,則圖中相似三角形共有()A.1對 B.2對 C.3對 D.4對6.關于2、6、1、10、6的這組數(shù)據(jù),下列說法正確的是()A.這組數(shù)據(jù)的眾數(shù)是6 B.這組數(shù)據(jù)的中位數(shù)是1C.這組數(shù)據(jù)的平均數(shù)是6 D.這組數(shù)據(jù)的方差是107.觀察下列圖中所示的一系列圖形,它們是按一定規(guī)律排列的,依照此規(guī)律,第2019個圖形共有()個〇.A.6055 B.6056 C.6057 D.60588.7的相反數(shù)是()A.7 B.-7 C. D.-9.已知關于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,下列判斷正確的是()A.1一定不是關于x的方程x2+bx+a=0的根B.0一定不是關于x的方程x2+bx+a=0的根C.1和﹣1都是關于x的方程x2+bx+a=0的根D.1和﹣1不都是關于x的方程x2+bx+a=0的根10.實數(shù)的相反數(shù)是()A.- B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.方程的解為__________.12.若有意義,則x的取值范圍是.13.如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=1DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正確結論的是_____.14.二次函數(shù)y=x2-2x+1的對稱軸方程是x=_______.15.如圖,設△ABC的兩邊AC與BC之和為a,M是AB的中點,MC=MA=5,則a的取值范圍是_____.16.如圖,為保護門源百里油菜花海,由“芬芳浴”游客中心A處修建通往百米觀景長廊BC的兩條棧道AB,AC.若∠B=56°,∠C=45°,則游客中心A到觀景長廊BC的距離AD的長約為_____米.(sin56°≈0.8,tan56°≈1.5)三、解答題(共8題,共72分)17.(8分)如圖,AB為⊙O的直徑,點E在⊙O,C為弧BE的中點,過點C作直線CD⊥AE于D,連接AC、BC.試判斷直線CD與⊙O的位置關系,并說明理由若AD=2,AC=,求⊙O的半徑.18.(8分)已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DF∥BE.求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.19.(8分)2018年4月份,鄭州市教育局針對鄭州市中小學參與課外輔導進行調查,根據(jù)學生參與課外輔導科目的數(shù)量,分成了:1科、2科、3科和4科,以下簡記為:1、2、3、4,并根據(jù)調查結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(未完成),請結合圖中所給信息解答下列問題:(1)本次被調查的學員共有人;在被調查者中參加“3科”課外輔導的有人.(2)將條形統(tǒng)計圖補充完整;(3)已知鄭州市中小學約有24萬人,那么請你估計一下參與輔導科目不多于2科的學生大約有多少人.20.(8分)向陽中學校園內有一條林萌道叫“勤學路”,道路兩邊有如圖所示的路燈(在鉛垂面內的示意圖),燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區(qū)域DE的長為13.3米,從D、E兩處測得路燈A的仰角分別為α和45°,且tanα=1.求燈桿AB的長度.21.(8分)計算:.22.(10分)為了了解某校學生對以下四個電視節(jié)目:A《最強大腦》,B《中國詩詞大會》,C《朗讀者》,D《出彩中國人》的喜愛情況,隨機抽取了部分學生進行調查,要求每名學生選出并且只能選出一個自己最喜愛的節(jié)目,根據(jù)調查結果,繪制了如下兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中所提供的信息,完成下列問題:本次調查的學生人數(shù)為________;在扇形統(tǒng)計圖中,A部分所占圓心角的度數(shù)為________;請將條形統(tǒng)計圖補充完整:若該校共有3000名學生,估計該校最喜愛《中國詩詞大會》的學生有多少名?23.(12分)解方程(1)x1﹣1x﹣1=0(1)(x+1)1=4(x﹣1)1.24.如圖,在邊長為1個單位長度的小正方形組成的12×12網(wǎng)格中建立平面直角坐標系,格點△ABC(頂點是網(wǎng)格線的交點)的坐標分別是A(﹣2,2),B(﹣3,1),C(﹣1,0).(1)將△ABC繞點O逆時針旋轉90°得到△DEF,畫出△DEF;(2)以O為位似中心,將△ABC放大為原來的2倍,在網(wǎng)格內畫出放大后的△A1B1C1,若P(x,y)為△ABC中的任意一點,這次變換后的對應點P1的坐標為.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】簡單幾何體的三視圖.【分析】左視圖是從左邊看到的圖形,因為圓柱的左視圖是矩形,圓錐的左視圖是等腰三角形,球的左視圖是圓,正方體的左視圖是正方形,所以,左視圖是四邊形的幾何體是圓柱和正方體2個.故選B.2、C【解析】
先利用切線長定理得到,再利用可判斷為等邊三角形,然后根據(jù)等邊三角形的性質求解.【詳解】解:,PB為的切線,,,為等邊三角形,.故選C.【點睛】本題考查切線長定理,掌握切線長定理是解題的關鍵.3、B【解析】
先根據(jù)平行四邊形的性質得到點的坐標,再代入反比例函數(shù)(k≠0)求出其解析式,再根據(jù)反比例函數(shù)的圖象與性質對選項進行判斷.【詳解】解:A(4,0),B(1,3),,,反比例函數(shù)(k≠0)的圖象經(jīng)過點,,反比例函數(shù)解析式為.□OACB的面積為,正確;當時,,故錯誤;將□OACB向上平移12個單位長度,點的坐標變?yōu)?,在反比例函?shù)圖象上,故正確;因為反比例函數(shù)的圖象關于原點中心對稱,故將□OACB繞點O旋轉180°,點C的對應點落在反比例函數(shù)圖象的另一分支上,正確.故選:B.【點睛】本題綜合考查了平行四邊形的性質和反比例函數(shù)的圖象與性質,結合圖形,熟練掌握和運用相關性質定理是解答關鍵.4、C【解析】由題意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以圖中共有六對相似三角形.故選C.5、C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三對相似三角形.故選C.6、A【解析】
根據(jù)方差、算術平均數(shù)、中位數(shù)、眾數(shù)的概念進行分析.【詳解】數(shù)據(jù)由小到大排列為1,2,6,6,10,它的平均數(shù)為(1+2+6+6+10)=5,數(shù)據(jù)的中位數(shù)為6,眾數(shù)為6,數(shù)據(jù)的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故選A.考點:方差;算術平均數(shù);中位數(shù);眾數(shù).7、D【解析】
設第n個圖形有a個O(n為正整數(shù)),觀察圖形,根據(jù)各圖形中O的個數(shù)的變化可找出"a=1+3n(n為正整數(shù))",再代入a=2019即可得出結論【詳解】設第n個圖形有an個〇(n為正整數(shù)),觀察圖形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴an=1+3n(n為正整數(shù)),∴a2019=1+3×2019=1.故選:D.【點睛】此題考查規(guī)律型:圖形的變化,解題關鍵在于找到規(guī)律8、B【解析】
根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案.【詳解】7的相反數(shù)是?7,故選:B.【點睛】此題考查相反數(shù),解題關鍵在于掌握其定義.9、D【解析】
根據(jù)方程有兩個相等的實數(shù)根可得出b=a+1或b=-(a+1),當b=a+1時,-1是方程x2+bx+a=0的根;當b=-(a+1)時,1是方程x2+bx+a=0的根.再結合a+1≠-(a+1),可得出1和-1不都是關于x的方程x2+bx+a=0的根.【詳解】∵關于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,∴,∴b=a+1或b=-(a+1).當b=a+1時,有a-b+1=0,此時-1是方程x2+bx+a=0的根;當b=-(a+1)時,有a+b+1=0,此時1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是關于x的方程x2+bx+a=0的根.故選D.【點睛】本題考查了根的判別式以及一元二次方程的定義,牢記“當△=0時,方程有兩個相等的實數(shù)根”是解題的關鍵.10、A【解析】
根據(jù)相反數(shù)的定義即可判斷.【詳解】實數(shù)的相反數(shù)是-故選A.【點睛】此題主要考查相反數(shù)的定義,解題的關鍵是熟知相反數(shù)的定義即可求解.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
兩邊同時乘,得到整式方程,解整式方程后進行檢驗即可.【詳解】解:兩邊同時乘,得,解得,檢驗:當時,≠0,所以x=1是原分式方程的根,故答案為:x=1.【點睛】本題考查了解分式方程,熟練掌握解分式方程的一般步驟以及注意事項是解題的關鍵.12、x≥8【解析】略13、①②③【解析】
根據(jù)翻折變換的性質和正方形的性質可證Rt△ABG≌Rt△AFG;在直角△ECG中,根據(jù)勾股定理可證BG=GC;通過證明∠AGB=∠AGF=∠GFC=∠GCF,由平行線的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面積比較即可.【詳解】①正確.
理由:
∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正確.理由:EF=DE=CD=2,設BG=FG=x,則CG=6-x.在直角△ECG中,根據(jù)勾股定理,得(6-x)2+42=(x+2)2,解得x=1.∴BG=1=6-1=GC;③正確.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④錯誤.理由:∵S△GCE=GC?CE=×1×4=6
∵GF=1,EF=2,△GFC和△FCE等高,
∴S△GFC:S△FCE=1:2,
∴S△GFC=×6=≠1.
故④不正確.
∴正確的個數(shù)有1個:①②③.故答案為①②③【點睛】本題綜合性較強,考查了翻折變換的性質和正方形的性質,全等三角形的判定與性質,勾股定理,平行線的判定,三角形的面積計算,有一定的難度.14、1【解析】
利用公式法可求二次函數(shù)y=x2-2x+1的對稱軸.也可用配方法.【詳解】∵-=-=1,∴x=1.故答案為:1【點睛】本題考查二次函數(shù)基本性質中的對稱軸公式;也可用配方法解決.15、10<a≤10.【解析】
根據(jù)題設知三角形ABC是直角三角形,由勾股定理求得AB的長度及由三角形的三邊關系求得a的取值范圍;然后根據(jù)題意列出二元二次方程組,通過方程組求得xy的值,再把該值依據(jù)根與系數(shù)的關系置于一元二次方程z2-az+=0中,最后由根的判別式求得a的取值范圍.【詳解】∵M是AB的中點,MC=MA=5,∴△ABC為直角三角形,AB=10;∴a=AC+BC>AB=10;令AC=x、BC=y.∴,∴xy=,∴x、y是一元二次方程z2-az+=0的兩個實根,∴△=a2-4×≥0,即a≤10.綜上所述,a的取值范圍是10<a≤10.故答案為10<a≤10.【點睛】本題綜合考查了勾股定理、直角三角形斜邊上的中線及根的判別式.此題的綜合性比較強,解題時,還利用了一元二次方程的根與系數(shù)的關系、根的判別式的知識點.16、60【解析】
根據(jù)題意和圖形可以分別表示出AD和CD的長,從而可以求得AD的長,本題得以解決.【詳解】∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米,∴BD=,CD=,∴+=100,解得,AD≈60考點:解直角三角形的應用.三、解答題(共8題,共72分)17、(1)直線CD與⊙O相切;(2)⊙O的半徑為1.1.【解析】
(1)相切,連接OC,∵C為的中點,∴∠1=∠2,∵OA=OC,∴∠1=∠ACO,∴∠2=∠ACO,∴AD∥OC,∵CD⊥AD,∴OC⊥CD,∴直線CD與⊙O相切;(2)連接CE,∵AD=2,AC=,∵∠ADC=90°,∴CD==,∵CD是⊙O的切線,∴=AD?DE,∴DE=1,∴CE==,∵C為的中點,∴BC=CE=,∵AB為⊙O的直徑,∴∠ACB=90°,∴AB==2.∴半徑為1.118、證明見解析【解析】證明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四邊形ABCD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形).(1)利用兩邊和它們的夾角對應相等的兩三角形全等(SAS),這一判定定理容易證明△AFD≌△CEB.(2)由△AFD≌△CEB,容易證明AD=BC且AD∥BC,可根據(jù)一組對邊平行且相等的四邊形是平行四邊形.19、(1)50,10;(2)見解析.(3)16.8萬【解析】
(1)結合條形統(tǒng)計圖和扇形統(tǒng)計圖中的參加“3科”課外輔導人數(shù)及百分比,求得總人數(shù)為50人;再由總人數(shù)減去參加“1科”,“2科”,“4科”課外輔導人數(shù)即可求出答案.(2)由(1)知在被調查者中參加“3科”課外輔導的有10人,由扇形統(tǒng)計圖可知參加“4科”課外輔導人數(shù)占比為10%,故參加“4科”課外輔導人數(shù)的有5人.(3)因為參加“1科”和“2科”課外輔導人數(shù)占比為,所以全市參與輔導科目不多于2科的人數(shù)為24×=16.8(萬).【詳解】解:(1)本次被調查的學員共有:15÷30%=50(人),在被調查者中參加“3科”課外輔導的有:50﹣15﹣20﹣50×10%=10(人),故答案為50,10;(2)由(1)知在被調查者中參加“3科”課外輔導的有10人,在被調查者中參加“4科”課外輔導的有:50×10%=5(人),補全的條形統(tǒng)計圖如右圖所示;(3)24×=16.8(萬),答:參與輔導科目不多于2科的學生大約有16.8人.【點睛】本題考察了條形統(tǒng)計圖和扇形統(tǒng)計圖,關鍵在于將兩者結合起來解題.20、燈桿AB的長度為2.3米.【解析】
過點A作AF⊥CE,交CE于點F,過點B作BG⊥AF,交AF于點G,則FG=BC=2.設AF=x知EF=AF=x、DF==,由DE=13.3求得x=11.4,據(jù)此知AG=AF﹣GF=1.4,再求得∠ABG=∠ABC﹣∠CBG=30°可得AB=2AG=2.3.【詳解】過點A作AF⊥CE,交CE于點F,過點B作BG⊥AF,交AF于點G,則FG=BC=2.由題意得:∠ADE=α,∠E=45°.設AF=x.∵∠E=45°,∴EF=AF=x.在Rt△ADF中,∵tan∠ADF=,∴DF==.∵DE=13.3,∴x+=13.3,∴x=11.4,∴AG=AF﹣GF=11.4﹣2=1.4.∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3.答:燈桿AB的長度為2.3米.【點睛】本題主要考查解直角三角形﹣仰角俯角問題,解題的關鍵是結合題意構建直角三角形并熟練掌握三角函數(shù)的定義及其應用能力.21、【解析】
根據(jù)絕對值的性質、零指數(shù)冪的性質、特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪的性質、二次根式的性質及乘方的定義分別計算后,再合并即可【詳解】原式.【點睛】此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關鍵.22、(1)120;(2)
;(3)答案見解析;(4)1650.【解析】
(1)依據(jù)節(jié)目B的數(shù)據(jù),即可得到調查的學生人數(shù);(2)依據(jù)A部分的百分比,即可得到A部分所占圓心角的度數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 關于開學的致辭(6篇)
- 關于學生會宣傳部工作計劃模板9篇
- 銷售主管責任心得體會(3篇)
- 聯(lián)營合同樣式二(3篇)
- 房屋委托買賣協(xié)議書
- 植樹節(jié)科普講座模板
- 哲學邏輯教學模板
- 2024年攝影工作室掛靠經(jīng)營合同
- 買房傭金合同模板
- 鹵味培訓協(xié)議合同范例
- 安保方案模板
- 體育室內課《籃球ppt課件》
- 安裝培訓方案
- 2023邊緣物聯(lián)代理技術要求
- 航空航天類專業(yè)大學生職業(yè)生涯規(guī)劃書
- 餐廳小票打印模板
- 腹脹護理課件
- 水稻栽培技術-水稻常規(guī)栽培技術
- 常見營養(yǎng)相關慢性疾病的營養(yǎng)指導
- 標準報價單模板(二)
- 《mc入門教程》課件
評論
0/150
提交評論