版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年青海省西寧二十一中學(xué)中考數(shù)學(xué)猜題卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點O,連AO、BO、CO,并取它們的中點D、E、F,得△DEF,則下列說法正確的個數(shù)是()①△ABC與△DEF是位似圖形
②△ABC與△DEF是相似圖形③△ABC與△DEF的周長比為1:2
④△ABC與△DEF的面積比為4:1.A.1 B.2 C.3 D.42.將函數(shù)的圖象用下列方法平移后,所得的圖象不經(jīng)過點A(1,4)的方法是()A.向左平移1個單位 B.向右平移3個單位C.向上平移3個單位 D.向下平移1個單位3.為弘揚傳統(tǒng)文化,某校初二年級舉辦傳統(tǒng)文化進(jìn)校園朗誦大賽,小明同學(xué)根據(jù)比賽中九位評委所給的某位參賽選手的分?jǐn)?shù),制作了一個表格,如果去掉一個最高分和一個最低分,則表中數(shù)據(jù)一定不發(fā)生變化的是()中位數(shù)眾數(shù)平均數(shù)方差9.29.39.10.3A.中位數(shù) B.眾數(shù) C.平均數(shù) D.方差4.如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.45.十九大報告指出,我國目前經(jīng)濟(jì)保持了中高速增長,在世界主要國家中名列前茅,國內(nèi)生產(chǎn)總值從54萬億元增長80萬億元,穩(wěn)居世界第二,其中80萬億用科學(xué)記數(shù)法表示為()A.8×1012 B.8×1013 C.8×1014 D.0.8×10136.如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:17.在0,-2,5,,-0.3中,負(fù)數(shù)的個數(shù)是().A.1 B.2 C.3 D.48.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.9.將2001×1999變形正確的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+110.已知:如圖,AD是△ABC的角平分線,且AB:AC=3:2,則△ABD與△ACD的面積之比為()A.3:2 B.9:4 C.2:3 D.4:9二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C,A’B’交AC于點D,若∠A’DC=90°,則∠A=°.12.寫出一個經(jīng)過點(1,2)的函數(shù)表達(dá)式_____.13.若關(guān)于x的方程有增根,則m的值是▲14.若式子有意義,則實數(shù)x的取值范圍是_______.15.如圖,在矩形ABCD中,E、F分別是AD、CD的中點,沿著BE將△ABE折疊,點A剛好落在BF上,若AB=2,則AD=________.16.分解因式:4a3b﹣ab=_____.三、解答題(共8題,共72分)17.(8分)如圖,某同學(xué)在測量建筑物AB的高度時,在地面的C處測得點A的仰角為30°,向前走60米到達(dá)D處,在D處測得點A的仰角為45°,求建筑物AB的高度.18.(8分)已知,,,斜邊,將繞點順時針旋轉(zhuǎn),如圖1,連接.(1)填空:;(2)如圖1,連接,作,垂足為,求的長度;(3)如圖2,點,同時從點出發(fā),在邊上運動,沿路徑勻速運動,沿路徑勻速運動,當(dāng)兩點相遇時運動停止,已知點的運動速度為1.5單位秒,點的運動速度為1單位秒,設(shè)運動時間為秒,的面積為,求當(dāng)為何值時取得最大值?最大值為多少?19.(8分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.20.(8分)4月9日上午8時,2017徐州國際馬拉松賽鳴槍開跑,一名歲的男子帶著他的兩個孩子一同參加了比賽,下面是兩個孩子與記者的對話:根據(jù)對話內(nèi)容,請你用方程的知識幫記者求出哥哥和妹妹的年齡.21.(8分)如圖,某游樂園有一個滑梯高度AB,高度AC為3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.60)22.(10分)如圖,在平面直角坐標(biāo)系xOy中,直線y=x+b與雙曲線y=相交于A,B兩點,已知A(2,5).求:b和k的值;△OAB的面積.23.(12分)如圖,在4×4的正方形方格中,△ABC和△DEF的頂點都在邊長為1的小正方形的頂點上.填空:∠ABC=°,BC=;判斷△ABC與△DEF是否相似,并證明你的結(jié)論.24.如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點M為邊BC上一動點,聯(lián)結(jié)AM并延長交射線DC于點F,作∠FAE=45°交射線BC于點E、交邊DCN于點N,聯(lián)結(jié)EF.(1)當(dāng)CM:CB=1:4時,求CF的長.(2)設(shè)CM=x,CE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.(3)當(dāng)△ABM∽△EFN時,求CM的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)位似圖形的性質(zhì),得出①△ABC與△DEF是位似圖形進(jìn)而根據(jù)位似圖形一定是相似圖形得出②△ABC與△DEF是相似圖形,再根據(jù)周長比等于位似比,以及根據(jù)面積比等于相似比的平方,即可得出答案.【詳解】解:根據(jù)位似性質(zhì)得出①△ABC與△DEF是位似圖形,②△ABC與△DEF是相似圖形,∵將△ABC的三邊縮小的原來的,∴△ABC與△DEF的周長比為2:1,故③選項錯誤,根據(jù)面積比等于相似比的平方,∴④△ABC與△DEF的面積比為4:1.故選C.【點睛】此題主要考查了位似圖形的性質(zhì),中等難度,熟悉位似圖形的性質(zhì)是解決問題的關(guān)鍵.2、D【解析】A.平移后,得y=(x+1)2,圖象經(jīng)過A點,故A不符合題意;B.平移后,得y=(x?3)2,圖象經(jīng)過A點,故B不符合題意;C.平移后,得y=x2+3,圖象經(jīng)過A點,故C不符合題意;D.平移后,得y=x2?1圖象不經(jīng)過A點,故D符合題意;故選D.3、A【解析】
根據(jù)中位數(shù):將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)可得答案.【詳解】如果去掉一個最高分和一個最低分,則表中數(shù)據(jù)一定不發(fā)生變化的是中位數(shù).故選A.點睛:本題主要考查了中位數(shù),關(guān)鍵是掌握中位數(shù)定義.4、C【解析】分析:過O1、O2作直線,以O(shè)1O2上一點為圓心作一半徑為2的圓,將這個圓從左側(cè)與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結(jié)合三個圓的半徑進(jìn)行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當(dāng)半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當(dāng)半徑為2的圓和圓O1、圓O2都內(nèi)切時,該圓在圓O4的位置;(3)當(dāng)半徑為2的圓和圓O1外切,而和圓O2內(nèi)切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關(guān)系,結(jié)合三個圓的半徑大小即可得到本題所求答案.5、B【解析】80萬億用科學(xué)記數(shù)法表示為8×1.故選B.點睛:本題考查了科學(xué)計數(shù)法,科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).6、B【解析】
可證明△DFE∽△BFA,根據(jù)相似三角形的面積之比等于相似比的平方即可得出答案.【詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.7、B【解析】
根據(jù)負(fù)數(shù)的定義判斷即可【詳解】解:根據(jù)負(fù)數(shù)的定義可知,這一組數(shù)中,負(fù)數(shù)有兩個,即-2和-0.1.故選B.8、D【解析】
先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【點睛】本題考查解直角三角形,三角函數(shù)值只與角的大小有關(guān),因而求一個角的函數(shù)值,可以轉(zhuǎn)化為求與它相等的其它角的三角函數(shù)值.9、A【解析】
原式變形后,利用平方差公式計算即可得出答案.【詳解】解:原式=(2000+1)×(2000-1)=20002-1,故選A.【點睛】此題考查了平方差公式,熟練掌握平方差公式是解本題的關(guān)鍵.10、A【解析】試題解析:過點D作DE⊥AB于E,DF⊥AC于F.∵AD為∠BAC的平分線,∴DE=DF,又AB:AC=3:2,故選A.點睛:角平分線上的點到角兩邊的距離相等.二、填空題(本大題共6個小題,每小題3分,共18分)11、55.【解析】
試題分析:∵把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考點:1.旋轉(zhuǎn)的性質(zhì);2.直角三角形兩銳角的關(guān)系.12、y=x+1(答案不唯一)【解析】
本題屬于結(jié)論開放型題型,可以將函數(shù)的表達(dá)式設(shè)計為一次函數(shù)、反比例函數(shù)、二次函數(shù)的表達(dá)式.答案不唯一.【詳解】解:所求函數(shù)表達(dá)式只要圖象經(jīng)過點(1,2)即可,如y=2x,y=x+1,…答案不唯一.
故答案可以是:y=x+1(答案不唯一).【點睛】本題考查函數(shù),解題的關(guān)鍵是清楚幾種函數(shù)的一般式.13、1.【解析】方程兩邊都乘以最簡公分母(x-2),把分式方程化為整式方程,再根據(jù)分式方程的增根就是使最簡公分母等于1的未知數(shù)的值求出x的值,然后代入進(jìn)行計算即可求出m的值:方程兩邊都乘以(x-2)得,2-x-m=2(x-2).∵分式方程有增根,∴x-2=1,解得x=2.∴2-2-m=2(2-2),解得m=1.14、x≤2且x≠1【解析】
根據(jù)被開方數(shù)大于等于1,分母不等于1列式計算即可得解.【詳解】解:由題意得,且x≠1,解得且x≠1.故答案為且x≠1.【點睛】本題考查的知識點為:分式有意義,分母不為1;二次根式的被開方數(shù)是非負(fù)數(shù).15、【解析】如圖,連接EF,∵點E、點F是AD、DC的中點,∴AE=ED,CF=DF=CD=AB=1,由折疊的性質(zhì)可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,,∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt△BCF中,BC=.∴AD=BC=2.點睛:本題考查了翻折變換的知識,解答本題的關(guān)鍵是連接EF,證明Rt△EA′F≌Rt△EDF,得出BF的長,再利用勾股定理解答即可.16、ab(2a+1)(2a-1)【解析】
先提取公因式再用公式法進(jìn)行因式分解即可.【詳解】4a3b-ab=ab(4a2-1)=ab(2a+1)(2a-1)【點睛】此題主要考查因式分解單項式,解題的關(guān)鍵是熟知因式分解的方法.三、解答題(共8題,共72分)17、(30+30)米.【解析】
解:設(shè)建筑物AB的高度為x米在Rt△ABD中,∠ADB=45°∴AB=DB=x∴BC=DB+CD=x+60在Rt△ABC中,∠ACB=30°,∴tan∠ACB=∴∴∴x=30+30∴建筑物AB的高度為(30+30)米18、(1)1;(2);(3)x時,y有最大值,最大值.【解析】
(1)只要證明△OBC是等邊三角形即可;(2)求出△AOC的面積,利用三角形的面積公式計算即可;(3)分三種情形討論求解即可解決問題:①當(dāng)0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.②當(dāng)x≤4時,M在BC上運動,N在OB上運動.③當(dāng)4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.【詳解】(1)由旋轉(zhuǎn)性質(zhì)可知:OB=OC,∠BOC=1°,∴△OBC是等邊三角形,∴∠OBC=1°.故答案為1.(2)如圖1中.∵OB=4,∠ABO=30°,∴OAOB=2,ABOA=2,∴S△AOC?OA?AB2×2.∵△BOC是等邊三角形,∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,∴AC,∴OP.(3)①當(dāng)0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.則NE=ON?sin1°x,∴S△OMN?OM?NE1.5xx,∴yx2,∴x時,y有最大值,最大值.②當(dāng)x≤4時,M在BC上運動,N在OB上運動.作MH⊥OB于H.則BM=8﹣1.5x,MH=BM?sin1°(8﹣1.5x),∴yON×MHx2+2x.當(dāng)x時,y取最大值,y,③當(dāng)4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y?MN?OG=12x,當(dāng)x=4時,y有最大值,最大值=2.綜上所述:y有最大值,最大值為.【點睛】本題考查幾何變換綜合題、30度的直角三角形的性質(zhì)、等邊三角形的判定和性質(zhì)、三角形的面積等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題.19、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】
(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.
(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;
(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識;本題綜合性強,有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.20、今年妹妹6歲,哥哥10歲.【解析】
試題分析:設(shè)今年妹妹的年齡為x歲,哥哥的年齡為y歲,根據(jù)兩個孩子的對話,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論.試題解析:設(shè)今年妹妹的年齡為x歲,哥哥的年齡為y歲,根據(jù)題意得:解得:.答:今年妹妹6歲,哥哥10歲.考點:二元一次方程組的應(yīng)用.21、調(diào)整后的滑梯AD比原滑梯AB增加2.5米【解析】試題分析:Rt△ABD中,根據(jù)30°的角所對的直角邊是斜邊的一半得到AD的長,然后在Rt△ABC中,求得AB的長后用即可求得增加的長度.試題解析:Rt△ABD中,∵AC=3米,∴AD=2AC=6(m)∵在Rt△ABC中,∴AD?AB=6?3.53≈2.5(m).∴調(diào)整后的滑梯AD比原滑梯AB增加2.5米.22、(1)b=3,k=10;(2)S△AOB=.【解析】(1)由直線y=x+b與雙曲線y=相交于A、B兩點,A(2,5),即可得到結(jié)論;(2)過A作AD⊥x軸于D,BE⊥x軸于E,根據(jù)y=x+3,y=,得到(-5,-2),C(-3,0).求出OC=3,然后根據(jù)三角形的面積公式即可得到結(jié)論.解:()把代入.∴∴.把代入,∴,∴.()∵,.∴時,,∴,.∴.又∵,∴.23、(1)(2)△ABC∽△DEF.【解析】
(1)根據(jù)已知條件,結(jié)合網(wǎng)格可以求出∠ABC的度數(shù),根據(jù),△ABC和△DEF的頂點都在邊長為1的小正方形的頂點上,利用勾股定理即可求出線段BC的長;
(2)根據(jù)相似三角形的判定定理,夾角相等,對應(yīng)邊成比例即可證明△ABC與△DEF相似.【詳解】(1)故答案為(2)△ABC∽△DEF.證明:∵在4×4的正方形方格中,∴∠ABC=∠DEF.∵∴∴△ABC∽△DEF.【點睛】考查勾股定理以及相似三角形的判定,熟練掌握相似三角形的判定方法是解題的關(guān)鍵.24、(1)CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.【解析】
(1)如圖1中,作AH⊥BC于H.首
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能水杯課程設(shè)計順序
- 小班特色禮儀課程設(shè)計
- 2024年某電力工程安全施工責(zé)任合同版B版
- 春游小班主題課程設(shè)計
- 2024年電商品牌授權(quán)經(jīng)營合同
- 歷史文化保護(hù)區(qū)環(huán)境整治合同
- 旅游交通工具租賃合同
- 發(fā)電機(jī)組租賃合同的法律責(zé)任
- 藥品配送疫情防控協(xié)議書
- 教育資源開發(fā)合作協(xié)議
- 醫(yī)院培訓(xùn)課件:《一例腸造口患者的病例討論》
- CHT 9009.2-2010 基礎(chǔ)地理信息數(shù)字成果1:5 000 1:10 000 1:25 000 1:50 000 1:100 000數(shù)字高程模型
- A課堂懲罰游戲
- 中國畫基礎(chǔ)-梅蘭竹菊智慧樹知到期末考試答案章節(jié)答案2024年華僑大學(xué)
- 工作轉(zhuǎn)正答辯問題
- 供應(yīng)鏈金融平臺設(shè)計方案
- 網(wǎng)絡(luò)安全技術(shù)知識競賽考試題庫500題(含答案)
- 外墻水包水清工施工合同
- 2023年國家糧食和物資儲備局招聘考試真題及答案
- 《零件測繪》學(xué)業(yè)水平考試題庫(濃縮300題)
- 集美大學(xué)航海技術(shù)船舶避碰與值班教案2課件
評論
0/150
提交評論