




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省涼山州2024屆中考猜題數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.已知拋物線y=x2-2mx-4(m>0)的頂點M關于坐標原點O的對稱點為M′,若點M′在這條拋物線上,則點M的坐標為()A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)2.如圖,點D在△ABC邊延長線上,點O是邊AC上一個動點,過O作直線EF∥BC,交∠BCA的平分線于點F,交∠BCA的外角平分線于E,當點O在線段AC上移動(不與點A,C重合)時,下列結論不一定成立的是()A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四邊形AFCE是矩形3.如圖,△ABC內接于半徑為5的⊙O,圓心O到弦BC的距離等于3,則∠A的正切值等于()A.B.C.D.4.(3分)學校要組織足球比賽.賽制為單循環(huán)形式(每兩隊之間賽一場).計劃安排21場比賽,應邀請多少個球隊參賽?設邀請x個球隊參賽.根據題意,下面所列方程正確的是()A.B.C.D.5.3月22日,美國宣布將對約600億美元進口自中國的商品加征關稅,中國商務部隨即公布擬對約30億美元自美進口商品加征關稅,并表示,中國不希望打貿易戰(zhàn),但絕不懼怕貿易戰(zhàn),有信心,有能力應對任何挑戰(zhàn).將數據30億用科學記數法表示為()A.3×109 B.3×108 C.30×108 D.0.3×10106.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數關系的圖象大致是()A. B.C. D.7.如圖,在△ABC中,EF∥BC,,S四邊形BCFE=8,則S△ABC=()A.9 B.10 C.12 D.138.如圖,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,則∠CDE的大小是()A.40° B.43° C.46° D.54°9.下列計算正確的是()A.2x2+3x2=5x4 B.2x2﹣3x2=﹣1C.2x2÷3x2=x2 D.2x2?3x2=6x410.已知二次函數y=ax2+bx+c(a≠1)的圖象如圖所示,給出以下結論:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正確結論的序號是()A.③④ B.②③ C.①④ D.①②③二、填空題(本大題共6個小題,每小題3分,共18分)11.若y=,則x+y=.12.在如圖所示的正方形方格紙中,每個小的四邊形都是相同的正方形,A、B、C、D都是格點,AB與CD相交于M,則AM:BM=__.13.從某玉米種子中抽取6批,在同一條件下進行發(fā)芽試驗,有關數據如下:種子粒數100400800100020005000發(fā)芽種子粒數8531865279316044005發(fā)芽頻率0.8500.7950.8150.7930.8020.801根據以上數據可以估計,該玉米種子發(fā)芽的概率為___________(精確到0.1).14.如圖,在平面直角坐標系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點F在x軸的正半軸上,點C在邊DE上,反比例函數(k≠0,x>0)的圖象過點B,E.若AB=2,則k的值為________.15.如圖,P為正方形ABCD內一點,PA:PB:PC=1:2:3,則∠APB=_____________.16.寫出一個一次函數,使它的圖象經過第一、三、四象限:______.三、解答題(共8題,共72分)17.(8分)把0,1,2三個數字分別寫在三張完全相同的不透明卡片的正面上,把這三張卡片背面朝上,洗勻后放在桌面上,先從中隨機抽取一張卡片,記錄下數字.放回后洗勻,再從中抽取一張卡片,記錄下數字.請用列表法或樹狀圖法求兩次抽取的卡片上的數字都是偶數的概率.18.(8分)如圖,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應的準蝶形,線段AB稱為碟寬,頂點M稱為碟頂.(1)由定義知,取AB中點N,連結MN,MN與AB的關系是_____.(2)拋物線y=對應的準蝶形必經過B(m,m),則m=_____,對應的碟寬AB是_____.(3)拋物線y=ax2﹣4a﹣(a>0)對應的碟寬在x軸上,且AB=1.①求拋物線的解析式;②在此拋物線的對稱軸上是否有這樣的點P(xp,yp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.19.(8分)先化簡,再求值:x(x+1)﹣(x+1)(x﹣1),其中x=1.20.(8分)如圖,某同學在測量建筑物AB的高度時,在地面的C處測得點A的仰角為30°,向前走60米到達D處,在D處測得點A的仰角為45°,求建筑物AB的高度.21.(8分)如圖,AB是半圓O的直徑,D為弦BC的中點,延長OD交弧BC于點E,點F為OD的延長線上一點且滿足∠OBC=∠OFC,求證:CF為⊙O的切線;若四邊形ACFD是平行四邊形,求sin∠BAD的值.22.(10分)已知,拋物線(為常數).(1)拋物線的頂點坐標為(,)(用含的代數式表示);(2)若拋物線經過點且與圖象交點的縱坐標為3,請在圖1中畫出拋物線的簡圖,并求的函數表達式;(3)如圖2,規(guī)矩的四條邊分別平行于坐標軸,,若拋物線經過兩點,且矩形在其對稱軸的左側,則對角線的最小值是.23.(12分)如圖,AC是⊙O的直徑,PA切⊙O于點A,點B是⊙O上的一點,且∠BAC=30°,∠APB=60°.(1)求證:PB是⊙O的切線;(2)若⊙O的半徑為2,求弦AB及PA,PB的長.24.某景區(qū)門票價格80元/人,景區(qū)為吸引游客,對門票價格進行動態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包括10人)不打折,10人以上超過10人的部分打b折,設游客為x人,門票費用為y元,非節(jié)假日門票費用y1(元)及節(jié)假日門票費用y2(元)與游客x(人)之間的函數關系如圖所示.(1)a=,b=;(2)確定y2與x之間的函數關系式:(3)導游小王6月10日(非節(jié)假日)帶A旅游團,6月20日(端午節(jié))帶B旅游團到該景區(qū)旅游,兩團共計50人,兩次共付門票費用3040元,求A、B兩個旅游團各多少人?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:=,∴點M(m,﹣m2﹣1),∴點M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故選C.考點:二次函數的性質.2、D【解析】
依據三角形外角性質,角平分線的定義,以及平行線的性質,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,進而得到結論.【詳解】解:∵∠ACD是△ABC的外角,∴∠ACD=∠BAC+∠B,∵CE平分∠DCA,∴∠ACD=2∠ACE,∴2∠ACE=∠BAC+∠B,故A選項正確;∵EF∥BC,CF平分∠BCA,∴∠BCF=∠CFE,∠BCF=∠ACF,∴∠ACF=∠EFC,∴OF=OC,同理可得OE=OC,∴EF=2OC,故B選項正確;∵CF平分∠BCA,CE平分∠ACD,∴∠ECF=∠ACE+∠ACF=×180°=90°,故C選項正確;∵O不一定是AC的中點,∴四邊形AECF不一定是平行四邊形,∴四邊形AFCE不一定是矩形,故D選項錯誤,故選D.【點睛】本題考查三角形外角性質,角平分線的定義,以及平行線的性質.3、C.【解析】試題分析:如答圖,過點O作OD⊥BC,垂足為D,連接OB,OC,∵OB=5,OD=3,∴根據勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故選D.考點:1.垂徑定理;2.圓周角定理;3.勾股定理;4.銳角三角函數定義.4、B.【解析】試題分析:設有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:,故選B.考點:由實際問題抽象出一元二次方程.5、A【解析】
科學記數法的表示形式為的形式,其中,n為整數確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同當原數絕對值時,n是正數;當原數的絕對值時,n是負數.【詳解】將數據30億用科學記數法表示為,故選A.【點睛】此題考查科學記數法的表示方法科學記數法的表示形式為的形式,其中,n為整數,表示時關鍵要正確確定a的值以及n的值.6、A【解析】
此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數關系式即可.【詳解】解:設CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數關系由函數關系式可看出A中的函數圖象與所求的分段函數對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關系,重點是列出函數關系式,但需注意自變量的取值范圍.7、A【解析】
由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面積比等于相似比的平方,即可求得答案.【詳解】∵,∴.又∵EF∥BC,∴△AEF∽△ABC.∴.∴1S△AEF=S△ABC.又∵S四邊形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故選A.8、C【解析】
根據DE∥AB可求得∠CDE=∠B解答即可.【詳解】解:∵DE∥AB,∴∠CDE=∠B=46°,故選:C.【點睛】本題主要考查平行線的性質:兩直線平行,同位角相等.快速解題的關鍵是牢記平行線的性質.9、D【解析】
先利用合并同類項法則,單項式除以單項式,以及單項式乘以單項式法則計算即可得到結果.【詳解】A、2x2+3x2=5x2,不符合題意;B、2x2﹣3x2=﹣x2,不符合題意;C、2x2÷3x2=,不符合題意;D、2x23x2=6x4,符合題意,故選:D.【點睛】本題主要考查了合并同類項法則,單項式除以單項式,單項式乘以單項式法則,正確掌握運算法則是解題關鍵.10、C【解析】試題分析:由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.解:①當x=1時,y=a+b+c=1,故本選項錯誤;②當x=﹣1時,圖象與x軸交點負半軸明顯大于﹣1,∴y=a﹣b+c<1,故本選項正確;③由拋物線的開口向下知a<1,∵對稱軸為1>x=﹣>1,∴2a+b<1,故本選項正確;④對稱軸為x=﹣>1,∴a、b異號,即b>1,∴abc<1,故本選項錯誤;∴正確結論的序號為②③.故選B.點評:二次函數y=ax2+bx+c系數符號的確定:(1)a由拋物線開口方向確定:開口方向向上,則a>1;否則a<1;(2)b由對稱軸和a的符號確定:由對稱軸公式x=﹣b2a判斷符號;(3)c由拋物線與y軸的交點確定:交點在y軸正半軸,則c>1;否則c<1;(4)當x=1時,可以確定y=a+b+C的值;當x=﹣1時,可以確定y=a﹣b+c的值.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】試題解析:∵原二次根式有意義,∴x-3≥0,3-x≥0,∴x=3,y=4,∴x+y=1.考點:二次根式有意義的條件.12、5:1【解析】
根據題意作出合適的輔助線,然后根據三角形相似即可解答本題.【詳解】解:作AE∥BC交DC于點E,交DF于點F,設每個小正方形的邊長為a,則△DEF∽△DCN,∴==,∴EF=a,∵AF=2a,∴AE=a,∵△AME∽△BMC,∴===,故答案為:5:1.【點睛】本題考查相似三角形的判定與性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.13、1.2【解析】
仔細觀察表格,發(fā)現大量重復試驗發(fā)芽的頻率逐漸穩(wěn)定在1.2左右,從而得到結論.【詳解】∵觀察表格,發(fā)現大量重復試驗發(fā)芽的頻率逐漸穩(wěn)定在1.2左右,∴該玉米種子發(fā)芽的概率為1.2,故答案為1.2.【點睛】考查利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數與總情況數之比.14、【解析】
解:設E(x,x),∴B(2,x+2),∵反比例函數(k≠0,x>0)的圖象過點B.E.∴x2=2(x+2),,(舍去),,故答案為15、°【解析】
通過旋轉,把PA、PB、PC或關聯(lián)的線段集中到同一個三角形,再根據兩邊的平方和等于第三邊求證直角三角形,可以求解∠APB.【詳解】把△PAB繞B點順時針旋轉90°,得△P′BC,則△PAB≌△P′BC,設PA=x,PB=2x,PC=3x,連PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案為135°.【點睛】本題考查的是正方形四邊相等的性質,考查直角三角形中勾股定理的運用,把△PAB順時針旋轉90°使得A′與C點重合是解題的關鍵.16、y=x﹣1(答案不唯一)【解析】一次函數圖象經過第一、三、四象限,則可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1(答案不唯一).三、解答題(共8題,共72分)17、見解析,.【解析】
畫樹狀圖展示所有9種等可能的結果數,找出兩次抽取的卡片上的數字都是偶數的結果數,然后根據概率公式求解.【詳解】解:畫樹狀圖為:共有9種等可能的結果數,其中兩次抽取的卡片上的數字都是偶數的結果數為4,所以兩次抽取的卡片上的數字都是偶數的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.18、(1)MN與AB的關系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此拋物線的對稱軸上有這樣的點P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【解析】
(1)直接利用等腰直角三角形的性質分析得出答案;(2)利用已知點為B(m,m),代入拋物線解析式進而得出m的值,即可得出AB的值;(2)①根據題意得出拋物線必過(2,0),進而代入求出答案;②根據y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,進而得出答案.【詳解】(1)MN與AB的關系是:MN⊥AB,MN=AB,如圖1,∵△AMB是等腰直角三角形,且N為AB的中點,∴MN⊥AB,MN=AB,故答案為MN⊥AB,MN=AB;(2)∵拋物線y=對應的準蝶形必經過B(m,m),∴m=m2,解得:m=2或m=0(不合題意舍去),當m=2則,2=x2,解得:x=±2,則AB=2+2=4;故答案為2,4;(2)①由已知,拋物線對稱軸為:y軸,∵拋物線y=ax2﹣4a﹣(a>0)對應的碟寬在x軸上,且AB=1.∴拋物線必過(2,0),代入y=ax2﹣4a﹣(a>0),得,9a﹣4a﹣=0,解得:a=,∴拋物線的解析式是:y=x2﹣2;②由①知,如圖2,y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,∴在此拋物線的對稱軸上有這樣的點P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【點睛】此題主要考查了二次函數綜合以及等腰直角三角形的性質,正確應用等腰直角三角形的性質是解題關鍵.19、x+1,2.【解析】
先根據單項式乘以多項式的運算法則、平方差公式計算后,再去掉括號,合并同類項化為最簡后代入求值即可.【詳解】原式=x2+x﹣(x2﹣1)=x2+x﹣x2+1=x+1,當x=1時,原式=2.【點睛】本題考查了整式的化簡求值,根據整式的運算法則先把知識化為最簡是解決問題的關鍵.20、(30+30)米.【解析】
解:設建筑物AB的高度為x米在Rt△ABD中,∠ADB=45°∴AB=DB=x∴BC=DB+CD=x+60在Rt△ABC中,∠ACB=30°,∴tan∠ACB=∴∴∴x=30+30∴建筑物AB的高度為(30+30)米21、(1)見解析;(2).【解析】
(1)連接OC,根據等腰三角形的性質得到∠OCB=∠B,∠OCB=∠F,根據垂徑定理得到OF⊥BC,根據余角的性質得到∠OCF=90°,于是得到結論;
(2)過D作DH⊥AB于H,根據三角形的中位線的想知道的OD=AC,根據平行四邊形的性質得到DF=AC,設OD=x,得到AC=DF=2x,根據射影定理得到CD=x,求得BD=x,根據勾股定理得到AD=x,于是得到結論.【詳解】解:(1)連接OC,
∵OC=OB,
∴∠OCB=∠B,
∵∠B=∠F,
∴∠OCB=∠F,
∵D為BC的中點,
∴OF⊥BC,
∴∠F+∠FCD=90°,
∴∠OCB+∠FCD=90°,
∴∠OCF=90°,
∴CF為⊙O的切線;
(2)過D作DH⊥AB于H,
∵AO=OB,CD=DB,
∴OD=AC,
∵四邊形ACFD是平行四邊形,
∴DF=AC,
設OD=x,
∴AC=DF=2x,
∵∠OCF=90°,CD⊥OF,
∴CD2=OD?DF=2x2,
∴CD=x,
∴BD=x,
∴AD=x,
∵OD=x,BD=x,
∴OB=x,
∴DH=x,
∴sin∠BAD==.【點睛】本題考查了切線的判定和性質,平行四邊形的性質,垂徑定理,射影定理,勾股定理,三角函數的定義,正確的作出輔助線是解題的關鍵.22、(1);(2)圖象見解析,或;(3)【解析】
(1)將拋物線的解析式配成頂點式,即可得出頂點坐標;(2)根據拋物線經過點M,用待定系數法求出拋物線的解析式,即可得出圖象,然后將縱坐標3代入拋物線的解析式中,求出橫坐標,然后將點再代入反比例函數的表達式中即可求出反比例函數的表示式;(3)設出A的坐標,表示出C,D的坐標,得到CD的長度,根據題意找到CD的最小值,因為AD的長度不變,所以當CD最小時,對角線AC最小,則答案可求.【詳解】解:(1),拋物線的頂點的坐標為.故答案為:(2)將代入拋物線的解析式得:解得:,拋物線的解析式為.拋物線的大致圖象如圖所示:將代入得:,解得:或拋物線與反比例函數圖象的交點坐標為或.將代入得:,.將代入得:,.綜上所述,反比例函數的表達式為或.(3)設點的坐標為,則點的坐標為,的坐標為.的長隨的增大而減?。匦卧谄鋵ΨQ軸的左側,拋物線的對稱軸為,當時,的長有最小值,的最小值.的長度不變,當最小時,有最小值.的最小值故答案為:.【點睛】本題主要考查二次函數,反比例函數與幾何綜合,掌握二次函數,反比例函數的圖象與性質是解題的關鍵.23、(1)見解析;(2)2【解析】試題分析:(1)連接OB,證PB⊥OB.根據四邊形的內角和為360°,結合已知條件可得∠OBP=90°得證;(2)連接OP,根據切線長定理得直角三角形,根據含30度角的直角三角形的性質即可求得結果.(1)連接OB.∵OA=OB,∴∠OBA=∠BAC=30°.∴∠AOB=80°-30°-30°=20°.∵PA切
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小區(qū)公共場地管理制度
- 軟件測試中的問題解決能力培養(yǎng)試題及答案
- 公司防疫防控管理制度
- 化驗用藥安全管理制度
- 學校參與社區(qū)管理制度
- 學校飲用衛(wèi)生管理制度
- 單位項目資金管理制度
- 可持續(xù)發(fā)展的2025年行政組織理論試題及答案
- 卡車司乘人員管理制度
- 學校精準資助管理制度
- 2024年輔導員職業(yè)能力大賽的基礎知識題庫解析
- 2024供電營業(yè)規(guī)則學習課件
- 老舍先生的成長研究報告
- 轉思想轉作風自查報告
- 北京現代伊蘭特配件價格
- 2024年上海市第二十七屆初中物理競賽初賽試題及答案
- 初中八年級信息技術課件-計算機網絡基礎知識
- 年產3000噸獼猴桃果酒工廠設計
- 養(yǎng)老護理員房間整理課件
- HACCP計劃年度評審報告
- 青光眼的治療與護理
評論
0/150
提交評論