版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省舒城縣龍河中學2023-2024學年高一數(shù)學第二學期期末預測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知是定義在上的奇函數(shù),且當時,,那么()A. B. C. D.2.已知某運動員每次投籃命中的概率都為40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):907966191925271932812458569683431257393027556488730113537989據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為()A.0.35 B.0.25 C.0.20 D.0.153.若等差數(shù)列的前5項之和,且,則()A.12 B.13 C.14 D.154.下列各命題中,假命題的是()A.“度”與“弧度”是度量角的兩種不同的度量單位B.一度的角是周角的,一弧度的角是周角的C.根據(jù)弧度的定義,一定等于弧度D.不論是用角度制還是用弧度制度量角,它們都與圓的半徑長短有關(guān)5.已知,,且,,則的值為()A. B.1 C. D.6.在中,,則()A. B. C. D.7.某城市修建經(jīng)濟適用房.已知甲、乙、丙三個社區(qū)分別有低收入家庭360戶、270戶、180戶,若首批經(jīng)濟適用房中有90套住房用于解決住房緊張問題,采用分層抽樣的方法決定各社區(qū)戶數(shù),則應從乙社區(qū)中抽取低收入家庭的戶數(shù)為()A.40 B.36 C.30 D.208.已知滿足:,則目標函數(shù)的最大值為()A.6 B.8 C.16 D.49.從裝有紅球、白球和黑球各2個的口袋內(nèi)一次取出2個球,則與事件“兩球都為白球”互斥而非對立的事件是以下事件“①兩球都不是白球;②兩球恰有一個白球;③兩球至少有一個白球”中的()A.①② B.①③C.②③ D.①②③10.某中學舉行英語演講比賽,如圖是七位評委為某位學生打出分數(shù)的莖葉圖,去掉一個最高分和一個最低分,所剩數(shù)據(jù)的中位數(shù)和平均數(shù)分別為()A.84,85 B.85,84 C.84,85.2 D.86,85二、填空題:本大題共6小題,每小題5分,共30分。11.已知兩個數(shù)k+9和6-k的等比中項是2k,則k=________.12.己知中,角所対的辻分別是.若,=,,則=______.13.從原點向直線作垂線,垂足為點,則的方程為_______.14.對于下列數(shù)排成的數(shù)陣:它的第10行所有數(shù)的和為________15.在中,若,點,分別是,的中點,則的取值范圍為___________.16.若滿足約束條件則的最大值為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),.(1)把表示為的形式,并寫出函數(shù)的最小正周期、值域;(2)求函數(shù)的單調(diào)遞增區(qū)間:(3)定義:對于任意實數(shù)、,設(shè),(常數(shù)),若對于任意,總存在,使得恒成立,求實數(shù)的取值范圍.18.已知數(shù)列的各項排成如圖所示的三角形數(shù)陣,數(shù)陣中,每一行的第一個數(shù),,,,…構(gòu)成等差數(shù)列,是的前n項和,且,(1)若數(shù)陣中從第三行開始每行中的數(shù)按從左到右的順序均構(gòu)成公比為正數(shù)的等比數(shù)列,且公比相等,已知,求的值;(2)設(shè),對任意,求及的最大值.19.已知直線l經(jīng)過點.(1)若直線在兩坐標軸上的截距相等,求直線的方程;(2)若,兩點到直線的距離相等,求直線的方程.20.已知的三個內(nèi)角,,的對邊分別為,,,函數(shù),且當時,取最大值.(1)若關(guān)于的方程,有解,求實數(shù)的取值范圍;(2)若,且,求的面積.21.已知向量,向量為單位向量,向量與的夾角為.(1)若向量與向量共線,求;(2)若與垂直,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:由題意得,,故,故選C.考點:分段函數(shù)的應用.2、B【解析】
已知三次投籃共有20種,再得到恰有兩次命中的事件的種數(shù),然后利用古典概型的概率公式求解.【詳解】三次投籃共有20種,恰有兩次命中的事件有:191,271,932,812,393,有5種∴該運動員三次投籃恰有兩次命中的概率為故選:B【點睛】本題主要考古典概型的概率求法,還考查了運算求解的能力,屬于基礎(chǔ)題.3、B【解析】試題分析:由題意得,,又,則,又,所以等差數(shù)列的公差為,所以.考點:等差數(shù)列的通項公式.4、D【解析】
根據(jù)弧度制的概念,逐項判斷,即可得出結(jié)果.【詳解】A選項,“度”與“弧度”是度量角的兩種不同的度量單位,正確;B選項,一度的角是周角的,一弧度的角是周角的,正確;C選項,根據(jù)弧度的定義,一定等于弧度,正確;D選項,用角度制度量角,與圓的半徑長短無關(guān),故D錯.故選:D.【點睛】本題主要考查弧度制的相關(guān)判定,熟記概念即可,屬于基礎(chǔ)題型.5、A【解析】
由已知求出,的值,再由,展開兩角差的余弦求解,即可得答案.【詳解】由,,且,,,,∴,∴,.故選:A.【點睛】本題考查兩角和與差的余弦、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意“拆角配角”思想的運用.6、B【解析】
根據(jù)向量的三角形法則進行轉(zhuǎn)化求解即可.【詳解】∵,∴,又則故選:B【點睛】本題考查向量加減混合運算及其幾何意義,靈活應用向量運算的三角形法則即可求解,屬于基礎(chǔ)題.7、C【解析】試題分析:利用分層抽樣的比例關(guān)系,設(shè)從乙社區(qū)抽取戶,則,解得.考點:考查分層抽樣.8、D【解析】
作出不等式組對應的平面區(qū)域,數(shù)形結(jié)合,利用z的幾何意義,即得?!驹斀狻坑深}得,不等式組對應的平面區(qū)域如圖,中z表示函數(shù)在y軸的截距,由圖易得,當函數(shù)經(jīng)過點A時z取到最大值,A點坐標為,因此目標函數(shù)的最大值為4.故選:D【點睛】本題考查線性規(guī)劃,是基礎(chǔ)題。9、A【解析】試題分析:結(jié)合互斥事件和對立事件的定義,即可得出結(jié)論解:根據(jù)題意,結(jié)合互斥事件、對立事件的定義可得,事件“兩球都為白球”和事件“兩球都不是白球”;事件“兩球都為白球”和事件“兩球中恰有一白球”;不可能同時發(fā)生,故它們是互斥事件.但這兩個事件不是對立事件,因為他們的和事件不是必然事件.故選A考點:互斥事件與對立事件.10、A【解析】
剩余數(shù)據(jù)為:84.84,86,84,87,計算中位數(shù)和平均數(shù).【詳解】剩余數(shù)據(jù)為:84.84,86,84,87則中位數(shù)為:84平均數(shù)為:故答案為A【點睛】本題考查了中位數(shù)和平均數(shù)的計算,屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.12、1【解析】
應用余弦定理得出,再結(jié)合已知等式配出即可.【詳解】∵,即,∴,①又由余弦定理得,②,②-①得,∴,∴.故答案為1.【點睛】本題考查余弦定理,掌握余弦定理是解題關(guān)鍵,解題時不需要求出的值,而是用整體配湊的方法得出配湊出,這樣可減少計算.13、.【解析】
先求得直線的斜率,由直線垂直時的斜率關(guān)系可求得直線的斜率.再根據(jù)點斜式即可求得直線的方程.【詳解】從原點向直線作垂線,垂足為點則直線的斜率由兩條垂直直線的斜率關(guān)系可知根據(jù)點斜式可得直線的方程為化簡得故答案為:【點睛】本題考查了直線垂直時的斜率關(guān)系,點斜式方程的應用,屬于基礎(chǔ)題.14、【解析】
由題意得第10行的第一個數(shù)的絕對值為,第10行的最后一個數(shù)的絕對值為,再根據(jù)奇數(shù)為負數(shù),偶數(shù)為正數(shù),得到第10行的各個數(shù),由此能求出第10行所有數(shù)的和.【詳解】第1行1個數(shù),第2行2個數(shù),則第9行9個數(shù),故第10行的第一個數(shù)的絕對值為,第10行的最后一個數(shù)的絕對值為,且奇數(shù)為負數(shù),偶數(shù)為正數(shù),故第10行所有數(shù)的和為,故答案為:.【點睛】本題以數(shù)陣為背景,觀察數(shù)列中項的特點,求數(shù)列通項和前項和,考查邏輯推理能力和運算求解能力,求解時要注意等差數(shù)列性質(zhì)的合理運用.15、【解析】
記,,,根據(jù)正弦定理得到,再由題意,得到,,推出,再由題意,確定的范圍,即可得出結(jié)果.【詳解】記,,,由得,所以,即,因此,因為,分別是,的中點,所以,同理:,所以,因為且,所以,則,所以,則,所以.即的取值范圍為.故答案為【點睛】本題主要考查解三角形,熟記正弦定理,以及兩角和的正弦公式即可,屬于??碱}型.16、【解析】
作出可行域,根據(jù)目標函數(shù)的幾何意義可知當時,.【詳解】不等式組表示的可行域是以為頂點的三角形區(qū)域,如下圖所示,目標函數(shù)的最大值必在頂點處取得,易知當時,.【點睛】線性規(guī)劃問題是高考中常考考點,主要以選擇及填空的形式出現(xiàn),基本題型為給出約束條件求目標函數(shù)的最值,主要結(jié)合方式有:截距型、斜率型、距離型等.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)(3)【解析】
(1)結(jié)合二倍角正弦公式和輔助角公式即可化簡;(2)結(jié)合(1)中所求表達式,正弦型函數(shù)單調(diào)增區(qū)間的通式即可求解;(3)根據(jù)題意可得,,求出的值域,列出關(guān)于的不等式組,即可求解【詳解】(1),,值域為;(2)令,解得,所以函數(shù)的單調(diào)遞增區(qū)間為,;(3)若對于任意,總存在,使得恒成立,則,,當,即時,,當,即時,,故,所以,解得,所以實數(shù)的取值范圍是【點睛】本題考查三角函數(shù)的化簡和三角函數(shù)的性質(zhì)應用,函數(shù)恒成立問題的轉(zhuǎn)化,屬于中檔題18、(1)(2),.【解析】
(1)先求出的通項公式,再計算等比數(shù)列的公比,最后得到.(2)先計算,再利用裂項求和計算得到,設(shè)函數(shù),通過均值不等式得到答案.【詳解】(1)為等差數(shù)列,設(shè)公差為,,,,,.設(shè)從第3行起,每行的公比都是q,且,,,,,故是數(shù)陣中第10行第5個數(shù),而.(2),.設(shè):(當且僅當時,等號成立)時,(其他方法酌情給分)【點睛】本題考查了等差數(shù)列等比數(shù)列,裂項求和,均值不等式,綜合性強,意在考查學生的計算能力和解決問題的能力.19、(2)或(2)或【解析】
(2)討論直線是否過原點,利用截距相等進行求解即可.(2)根據(jù)點到直線的距離相等,分直線平行和直線過A,B的中點兩種情況進行求解即可.【詳解】(2)若直線過原點,則設(shè)為y=kx,則k=2,此時直線方程為y=2x,當直線不過原點,設(shè)方程為2,即x+y=a,此時a=2+2=2,則方程為x+y=2,綜上直線方程為y=2x或x+y=2.(2)若A,B兩點在直線l同側(cè),則AB∥l,AB的斜率k2,即l的斜率為2,則l的方程為y﹣2=x﹣2,即y=x+2,若A,B兩點在直線的兩側(cè),即l過A,B的中點C(2,0),則k2,則l的方程為y﹣0=﹣2(x﹣2),即y=﹣2x+4,綜上l的方程為y=﹣2x+4或y=x+2.【點睛】本題主要考查直線方程的求解,結(jié)合直線截距相等以及點到直線距離相等,進行分類討論是解決本題的關(guān)鍵.20、(1);(2).【解析】
(1)利用兩角和差的正弦公式整理可得:,再利用已知可得:(),結(jié)合已知可得:,求得:時,,問題得解.(2)利用正弦定理可得:,結(jié)合可得:,對邊利用余弦定理可得:,結(jié)合已知整理得:,再利用三角形面積公式計算得解.【詳解】解:(1).因為在處取得最大值,所以,,即.因為,所以,所以.因為,所以所以,因為關(guān)于的方程有解,所以的取值范圍為.(2)因為,,由正弦定理,于是.又,所以.由余弦定理得:,整理得:,即,所以,所以.【點睛】本題主要考查了兩角和、差的正弦公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024標準附條件借款合同書
- 2024二級建造師勞動合同
- 2024商場日常保潔服務(wù)合同
- 教育培訓崗位聘任合同
- 湖北省武漢市七年級上學期語文期中試卷7套【附答案】
- 建筑工地施工人員合同范本2024
- 學術(shù)資源互享互惠協(xié)議
- 家庭長期發(fā)展規(guī)劃協(xié)議書
- 省級總代理授權(quán)協(xié)議
- 2023年高考地理復習精題精練-中國的能源安全(新高考專用)(解析版)
- 2023年天津公務(wù)員已出天津公務(wù)員考試真題
- 2025年高考數(shù)學專項題型點撥訓練之初等數(shù)論
- 教科版三年級科學上冊《第1單元第1課時 水到哪里去了》教學課件
- 通信技術(shù)工程師招聘筆試題與參考答案(某世界500強集團)2024年
- 國際貿(mào)易術(shù)語2020
- 國網(wǎng)新安規(guī)培訓考試題及答案
- 2024至2030年中國節(jié)流孔板組數(shù)據(jù)監(jiān)測研究報告
- 黑龍江省哈爾濱市師大附中2024-2025學年高一上學期10月階段性考試英語試題含答案
- 第六單元測試卷-2024-2025學年統(tǒng)編版語文三年級上冊
- 【課件】Unit4+Section+B+(Project)課件人教版(2024)七年級英語上冊
- 青少年法治教育實踐基地建設(shè)活動實施方案
評論
0/150
提交評論