上海市部分重點中學2024年高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第1頁
上海市部分重點中學2024年高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第2頁
上海市部分重點中學2024年高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第3頁
上海市部分重點中學2024年高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第4頁
上海市部分重點中學2024年高一數(shù)學第二學期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市部分重點中學2024年高一數(shù)學第二學期期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)f(x)=x?lnA. B.C. D.2.設(shè)的內(nèi)角,,所對的邊分別為,,,且,,面積的最大值為()A.6 B.8 C.7 D.93.已知過原點的直線與圓C:相交于不同的兩點,且線段的中點坐標為,則弦長為()A.2 B.3 C.4 D.54.設(shè),則“”是“”的()A.充要條件 B.充分而不必要條件C.必要而不充分條件 D.既不充分也不必要條件5.設(shè)等比數(shù)列的前項和為,若,公比,則的值為()A.15 B.16 C.30 D.316.某協(xié)會有200名會員,現(xiàn)要從中抽取40名會員作樣本,采用系統(tǒng)抽樣法等間距抽取樣本,將全體會員隨機按1~200編號,并按編號順序平均分為40組(1-5號,6-10號,…,196-200號).若第5組抽出的號碼為22,則第1組至第3組抽出的號碼依次是()A.3,8,13 B.2,7,12 C.3,9,15 D.2,6,127.已知數(shù)列的通項公式,前項和為,則關(guān)于數(shù)列、的極限,下面判斷正確的是()A.數(shù)列的極限不存在,的極限存在B.數(shù)列的極限存在,的極限不存在C.數(shù)列、的極限均存在,但極限值不相等D.數(shù)列、的極限均存在,且極限值相等8.若a=(3,2),bA.(3,-4) B.(-3,4) C.(3,4) D.(-3,-4)9.直線的斜率是()A. B.13 C.0 D.10.若雙曲線的漸近線與直線所圍成的三角形面積為2,則該雙曲線的離心率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.不等式的解集為_________________;12.過點作圓的兩條切線,切點分別為,則=.13.已知為的三個內(nèi)角A,B,C的對邊,向量,.若,且,則B=14.執(zhí)行如圖所示的程序框圖,則輸出的S的值是______.15.在中,,是邊上一點,且滿足,若,則_________.16.設(shè)函數(shù),則的值為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.的內(nèi)角的對邊分別為.(1)求證:;(2)在邊上取一點P,若.求證:.18.已知函數(shù).(I)求的最小正周期;(II)求在上的最大值與最小值.19.如圖,在平面四邊形中,,,,,.(1)求的長;(2)求的長.20.已知函數(shù).(1)當時,解不等式;(2)若不等式對恒成立,求m的取值范圍.21.如圖是一景區(qū)的截面圖,是可以行走的斜坡,已知百米,是沒有人行路(不能攀登)的斜坡,是斜坡上的一段陡峭的山崖.假設(shè)你(看做一點)在斜坡上,身上只攜帶著量角器(可以測量以你為頂點的角).(1)請你設(shè)計一個通過測量角可以計算出斜坡的長的方案,用字母表示所測量的角,計算出的長,并化簡;(2)設(shè)百米,百米,,,求山崖的長.(精確到米)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

判斷函數(shù)的奇偶性排除選項,利用特殊點的位置排除選項即可.【詳解】函數(shù)f(x)=x?ln|x|是奇函數(shù),排除選項A,當x=1e時,y=-1e,對應(yīng)點在故選:D.【點睛】本題考查函數(shù)的圖象的判斷,函數(shù)的奇偶性以及特殊點的位置是判斷函數(shù)的圖象的常用方法.2、D【解析】

由已知利用基本不等式求得的最大值,根據(jù)三角形的面積公式,即可求解,得到答案.【詳解】由題意,利用基本不等式可得,即,解得,當且僅當時等號成立,又因為,所以,當且僅當時等號成立,故三角形的面積的最大值為,故選D.【點睛】本題主要考查了基本不等式的應(yīng)用,以及三角形的面積公式的應(yīng)用,著重考查了轉(zhuǎn)化思想,以及推理與運算能力,屬于基礎(chǔ)題.3、A【解析】

根據(jù)兩直線垂直,斜率相乘等于-1,求得直線的斜率為,進而求出圓心到直線的距離,再代入弦長公式求得弦長值.【詳解】圓的標準方程為:,設(shè)圓心,,,,,直線的方程為:,到直線的距離,.【點睛】求直線與圓相交的弦長問題,核心是利用點到直線的距離公式,求圓心到直線的距離.4、C【解析】

首先解兩個不等式,再根據(jù)充分、必要條件的知識選出正確選項.【詳解】由解得.由得.所以“”是“”的必要而不充分條件故選:C【點睛】本小題主要考查充分、必要條件的判斷,考查絕對值不等式的解法,屬于基礎(chǔ)題.5、A【解析】

直接利用等比數(shù)列前n項和公式求.【詳解】由題得.故選A【點睛】本題主要考查等比數(shù)列求和,意在考查學生對該知識的理解掌握水平和分析推理能力.6、B【解析】

根據(jù)系統(tǒng)抽樣原理求出抽樣間距,再根據(jù)第5組抽出的號碼求出第1組抽出的號碼,即可得出第2組、第3組抽取的號碼.【詳解】根據(jù)系統(tǒng)抽樣原理知,抽樣間距為200÷40=5,

當?shù)?組抽出的號碼為22時,即22=4×5+2,

所以第1組至第3組抽出的號碼依次是2,7,1.

故選:B.【點睛】本題考查了系統(tǒng)抽樣方法的應(yīng)用問題,是基礎(chǔ)題.7、D【解析】

分別考慮與的極限,然后作比較.【詳解】因為,又,所以數(shù)列、的極限均存在,且極限值相等,故選D.【點睛】本題考查數(shù)列的極限的是否存在的判斷以及計算,難度一般.注意求解的極限時,若是分段數(shù)列求和的形式,一定要將多段數(shù)列均考慮到.8、D【解析】

直接利用向量的坐標運算法則化簡求解即可.【詳解】解:向量a=(3,2),b則向量2b-故選D.【點睛】本題考查向量的坐標運算,考查計算能力.9、A【解析】

由題得即得直線的斜率得解.【詳解】由題得,所以直線的斜率為.故選:A【點睛】本題主要考查直線的斜率的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.10、A【解析】漸近線為,時,,所以,即,,,故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)絕對值定義去掉絕對值符號后再解不等式.【詳解】時,原不等式可化為,,∴;時,原不等式可化為,,∴.綜上原不等式的解為.故答案為.【點睛】本題考查解絕對值不等式,解絕對值不等式的常用方法是根據(jù)絕對值定義去掉絕對值符號,然后求解.12、【解析】

如圖,連接,在直角三角形中,所以,,,故.考點:1.直線與圓的位置關(guān)系;2.平面向量的數(shù)量積.13、【解析】

根據(jù)得,再利用正弦定理得,化簡得出角的大小。再根據(jù)三角形內(nèi)角和即可得B.【詳解】根據(jù)題意,由正弦定理可得則所以答案為?!军c睛】本題主要考查向量與三角形正余弦定理的綜合應(yīng)用,屬于基礎(chǔ)題。14、4【解析】

模擬程序運行,觀察變量值的變化,尋找到規(guī)律周期性,確定輸出結(jié)果.【詳解】第1次循環(huán):,;第2次循環(huán):,;第3次循環(huán):,;第4次循環(huán):,;…;S關(guān)于i以4為周期,最后跳出循環(huán)時,此時.故答案為:4.【點睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu).解題關(guān)鍵是由程序確定變量變化的規(guī)律:周期性.15、【解析】

記,則,則可求出,設(shè),,得,,故結(jié)合余弦定理可得,解得的值,即可求,進而求的值.【詳解】根據(jù)題意,不妨設(shè),,則,因,所以,設(shè),由,得,又,所以,故由余弦定理可得,即,整理得:,即,所以,所以,所以,故答案為:.【點睛】本題主要考查了余弦定理在解三角形中的綜合應(yīng)用以及同角三角函數(shù)的基本關(guān)系式,屬于中檔題.16、【解析】

根據(jù)反正切函數(shù)的值域,結(jié)合條件得出的值.【詳解】,且,因此,,故答案為:.【點睛】本題考查反正切值的求解,解題時要結(jié)合反正切函數(shù)的值域以及特殊角的正切值來求解,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2)詳見解析.【解析】

(1)余弦定理的證明其實在課本就直接給出過它向量方法的證明,通過,等向量模長相等就可,當然我們還可以通過坐標的運算完成(如方法二)(2)通過點P,將三角形分割,這種題中多注意幾個相等(公共邊相等,)我們可以得到相對應(yīng)的等量關(guān)系,完成本題.【詳解】(1)證法一:如圖,即證法二:已知中所對邊分別為,以為原點,所在直線為軸建立直角坐標系,則,所以(2)令,由余弦定理得:,因為所以所以所以【點睛】(1)向量既有大小又有方向.在幾何中是一種很重要的工具,比如三角形中,三邊有大小,角度問題我們可以轉(zhuǎn)化為向量夾角相關(guān),所以很容易想到向量方法.(2)解組合三角形問題,多注重圖形中一些恒等關(guān)系比如邊長、角度問題.18、(I);(II)3,.【解析】

(I)利用降次公式和輔助角公式化簡解析式,由此求得的最小正周期.(II)根據(jù)函數(shù)的解析式,以及的取值范圍,結(jié)合三角函數(shù)值域的求法,求得在區(qū)間上的最大值與最小值.【詳解】(I)的最小正周期.(Ⅱ),.【點睛】本小題主要考查降次公式和輔助角公式,考查三角函數(shù)在閉區(qū)間上的最值的求法,屬于中檔題.19、(1);(2)【解析】

(1)在中,先得到再利用正弦定理得到.(2)在中,計算,由余弦定理得到,再用余弦定理得到.【詳解】(1)在中,,則,又由正弦定理,得(2)在中,,則,又即是等腰三角形,得.由余弦定理,得所以.在中,由余弦定理,得所以.【點睛】本題考查了正弦定理和余弦定理,意在考查學生利用正余弦定理解決問題的能力.20、(1)見解析;(2)【解析】

(1)當m>﹣2時,f(x)≥m;即(m+1)x2﹣mx+m﹣1≥m,因式分解,對m進行討論,可得解集;(2)轉(zhuǎn)化為x∈[﹣1,1]恒成立,分離參數(shù),利用基本不等式求最值求解m的取值范圍.【詳解】(1)當時,;即.可得:.∵①當時,即.不等式的解集為②當時,.∵,∴不等式的解集為③當時,.∵,∴不等式的解集為綜上:,不等式的解集為;當時,不等式的解集為;當時,不等式的解集為.(2)由題對任意,不等式恒成立.即.∵時,恒成立.可得:.設(shè),.則.可得:∵,當且僅當是取等號.∴,當且僅當是取等號.故得m的取值范圍.【點睛】本題主要考查了一元二次不等式的解法和討論思想的應(yīng)用,同時考查了分析求解的能力和計算能力,恒成立問題的轉(zhuǎn)化,屬于中檔題.21、(1)米,詳見解析(2)205米【解析】

(1)由題意測得,,在中利用正弦定理求得的值;(2)解法一,中由余弦定理求得,中求得和的值,在中利用余弦定理求得的值.解法二,中求得,中利用余弦定理求得,利用三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論