版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆山東省菏澤市成武縣重點名校中考數(shù)學(xué)模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,立體圖形的俯視圖是A. B. C. D.2.∠BAC放在正方形網(wǎng)格紙的位置如圖,則tan∠BAC的值為()A. B. C. D.3.如圖,已知矩形ABCD中,BC=2AB,點E在BC邊上,連接DE、AE,若EA平分∠BED,則的值為()A. B. C. D.4.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn),使點D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數(shù)為()A.80° B.90° C.100° D.120°5.如圖,矩形ABCD中,AB=8,BC=1.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.66.已知二次函數(shù)y=x2+bx+c的圖象與x軸相交于A、B兩點,其頂點為P,若S△APB=1,則b與c滿足的關(guān)系是()A.b2-4c+1=0 B.b2-4c-1=0 C.b2-4c+4=0 D.b2-4c-4=07.下列各式中,互為相反數(shù)的是()A.和 B.和 C.和 D.和8.如圖,PA和PB是⊙O的切線,點A和B是切點,AC是⊙O的直徑,已知∠P=40°,則∠ACB的大小是()A.60° B.65° C.70° D.75°9.在數(shù)軸上標(biāo)注了四段范圍,如圖,則表示的點落在()A.段① B.段② C.段③ D.段④10.如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=60°,則AE的長為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在矩形ABCD中,E是AD上一點,把△ABE沿直線BE翻折,點A正好落在BC邊上的點F處,如果四邊形CDEF和矩形ABCD相似,那么四邊形CDEF和矩形ABCD面積比是__.12.計算:=_____________.13.已知反比例函數(shù)y=在第二象限內(nèi)的圖象如圖,經(jīng)過圖象上兩點A、E分別引y軸與x軸的垂線,交于點C,且與y軸與x軸分別交于點M、B.連接OC交反比例函數(shù)圖象于點D,且,連接OA,OE,如果△AOC的面積是15,則△ADC與△BOE的面積和為_____.14.若點與點關(guān)于原點對稱,則______.15.如圖,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,則的值等于_____16.計算:2(a-b)+3b=___________.三、解答題(共8題,共72分)17.(8分)先化簡,再求值:(m+2﹣)?,其中m=﹣.18.(8分)如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.(1)求證:△AEF是等腰直角三角形;(2)如圖2,將△CED繞點C逆時針旋轉(zhuǎn),當(dāng)點E在線段BC上時,連接AE,求證:AF=AE;(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.19.(8分)動畫片《小豬佩奇》分靡全球,受到孩子們的喜愛.現(xiàn)有4張《小豬佩奇》角色卡片,分別是A佩奇,B喬治,C佩奇媽媽,D佩奇爸爸(四張卡片除字母和內(nèi)容外,其余完全相同).姐弟兩人做游戲,他們將這四張卡片混在一起,背面朝上放好.(1)姐姐從中隨機(jī)抽取一張卡片,恰好抽到A佩奇的概率為;(2)若兩人分別隨機(jī)抽取一張卡片(不放回),請用列表或畫樹狀圖的分方法求出恰好姐姐抽到A佩奇弟弟抽到B喬治的概率.20.(8分)下表中給出了變量x,與y=ax2,y=ax2+bx+c之間的部分對應(yīng)值,(表格中的符號“…”表示該項數(shù)據(jù)已丟失)x﹣101ax2……1ax2+bx+c72…(1)求拋物線y=ax2+bx+c的表達(dá)式(2)拋物線y=ax2+bx+c的頂點為D,與y軸的交點為A,點M是拋物線對稱軸上一點,直線AM交對稱軸右側(cè)的拋物線于點B,當(dāng)△ADM與△BDM的面積比為2:3時,求B點坐標(biāo);(3)在(2)的條件下,設(shè)線段BD與x軸交于點C,試寫出∠BAD和∠DCO的數(shù)量關(guān)系,并說明理由.21.(8分)已知:四邊形ABCD是平行四邊形,點O是對角線AC、BD的交點,EF過點O且與AB、CD分別相交于點E、F,連接EC、AF.(1)求證:DF=EB;(2)AF與圖中哪條線段平行?請指出,并說明理由.22.(10分)小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=
,cos37°=
,tan37°=
)
(1)求把手端點A到BD的距離;
(2)求CH的長.
23.(12分)如圖,在頂點為P的拋物線y=a(x-h)2+k(a≠0)的對稱軸1的直線上取點A(h,k+),過A作BC⊥l交拋物線于B、C兩點(B在C的左側(cè)),點和點A關(guān)于點P對稱,過A作直線m⊥l.又分別過點B,C作直線BE⊥m和CD⊥m,垂足為E,D.在這里,我們把點A叫此拋物線的焦點,BC叫此拋物線的直徑,矩形BCDE叫此拋物線的焦點矩形.(1)直接寫出拋物線y=x2的焦點坐標(biāo)以及直徑的長.(2)求拋物線y=x2-x+的焦點坐標(biāo)以及直徑的長.(3)已知拋物線y=a(x-h)2+k(a≠0)的直徑為,求a的值.(4)①已知拋物線y=a(x-h)2+k(a≠0)的焦點矩形的面積為2,求a的值.②直接寫出拋物線y=x2-x+的焦點短形與拋物線y=x2-2mx+m2+1公共點個數(shù)分別是1個以及2個時m的值.24.某高科技產(chǎn)品開發(fā)公司現(xiàn)有員工50名,所有員工的月工資情況如下表:員工管理人員普通工作人員人員結(jié)構(gòu)總經(jīng)理部門經(jīng)理科研人員銷售人員高級技工中級技工勤雜工員工數(shù)(名)1323241每人月工資(元)2100084002025220018001600950請你根據(jù)上述內(nèi)容,解答下列問題:(1)該公司“高級技工”有名;(2)所有員工月工資的平均數(shù)x為2500元,中位數(shù)為元,眾數(shù)為元;(3)小張到這家公司應(yīng)聘普通工作人員.請你回答右圖中小張的問題,并指出用(2)中的哪個數(shù)據(jù)向小張介紹員工的月工資實際水平更合理些;(4)去掉四個管理人員的工資后,請你計算出其他員工的月平均工資(結(jié)果保留整數(shù)),并判斷能否反映該公司員工的月工資實際水平.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:立體圖形的俯視圖是C.故選C.考點:簡單組合體的三視圖.2、D【解析】
連接CD,再利用勾股定理分別計算出AD、AC、BD的長,然后再根據(jù)勾股定理逆定理證明∠ADC=90°,再利用三角函數(shù)定義可得答案.【詳解】連接CD,如圖:,CD=,AC=∵,∴∠ADC=90°,∴tan∠BAC==.故選D.【點睛】本題主要考查了勾股定理,勾股定理逆定理,以及銳角三角函數(shù)定義,關(guān)鍵是證明∠ADC=90°.3、C【解析】
過點A作AF⊥DE于F,根據(jù)角平分線上的點到角的兩邊距離相等可得AF=AB,利用全等三角形的判定和性質(zhì)以及矩形的性質(zhì)解答即可.【詳解】解:如圖,過點A作AF⊥DE于F,在矩形ABCD中,AB=CD,∵AE平分∠BED,∴AF=AB,∵BC=2AB,∴BC=2AF,∴∠ADF=30°,在△AFD與△DCE中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD≌△DCE(AAS),∴△CDE的面積=△AFD的面積=∵矩形ABCD的面積=AB?BC=2AB2,∴2△ABE的面積=矩形ABCD的面積﹣2△CDE的面積=(2﹣)AB2,∴△ABE的面積=,∴,故選:C.【點睛】本題考查了矩形的性質(zhì),角平分線上的點到角的兩邊距離相等的性質(zhì),以及全等三角形的判定與性質(zhì),關(guān)鍵是根據(jù)角平分線上的點到角的兩邊距離相等可得AF=AB.4、B【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據(jù)三角形外角性質(zhì)得出∠CFD=∠B+∠BEF,代入求出即可.【詳解】解:∵將△ABC繞點A順時針旋轉(zhuǎn)得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,三角形內(nèi)角和定理,三角形外角性質(zhì)的應(yīng)用,掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.5、C【解析】試題分析:連接EF交AC于點M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點:菱形的性質(zhì);矩形的性質(zhì);勾股定理;銳角三角函數(shù).6、D【解析】
拋物線的頂點坐標(biāo)為P(?,),設(shè)A、B兩點的坐標(biāo)為A(,0)、B(,0)則AB=,根據(jù)根與系數(shù)的關(guān)系把AB的長度用b、c表示,而S△APB=1,然后根據(jù)三角形的面積公式就可以建立關(guān)于b、c的等式.【詳解】解:∵,∴AB==,∵若S△APB=1∴S△APB=×AB×=1,∴?××,∴,設(shè)=s,則,故s=2,∴=2,∴.故選D.【點睛】本題主要考查了拋物線與x軸的交點情況與判別式的關(guān)系、拋物線頂點坐標(biāo)公式、三角形的面積公式等知識,綜合性比較強(qiáng).7、A【解析】
根據(jù)乘方的法則進(jìn)行計算,然后根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案.【詳解】解:A.=9,=-9,故和互為相反數(shù),故正確;B.=9,=9,故和不是互為相反數(shù),故錯誤;C.=-8,=-8,故和不是互為相反數(shù),故錯誤;D.=8,=8故和不是互為相反數(shù),故錯誤.故選A.【點睛】本題考查了有理數(shù)的乘方和相反數(shù)的定義,關(guān)鍵是掌握有理數(shù)乘方的運算法則.8、C【解析】試題分析:連接OB,根據(jù)PA、PB為切線可得:∠OAP=∠OBP=90°,根據(jù)四邊形AOBP的內(nèi)角和定理可得∠AOB=140°,∵OC=OB,則∠C=∠OBC,根據(jù)∠AOB為△OBC的外角可得:∠ACB=140°÷2=70°.考點:切線的性質(zhì)、三角形外角的性質(zhì)、圓的基本性質(zhì).9、C【解析】試題分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,所以應(yīng)在③段上.故選C考點:實數(shù)與數(shù)軸的關(guān)系10、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四邊形OCED是平行四邊形,∵AC⊥BD,∴平行四邊形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC為等邊三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故選C.點睛:本題考查了菱形的性質(zhì),先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對角線互相垂直求出∠COD=90°,證明四邊形OCED是矩形,再根據(jù)菱形的性質(zhì)得出AC=AB,再根據(jù)勾股定理得出AE的長度即可.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】由題意易得四邊形ABFE是正方形,設(shè)AB=1,CF=x,則有BC=x+1,CD=1,∵四邊形CDEF和矩形ABCD相似,∴CD:BC=FC:CD,即1:(x+1)=x:1,∴x=或x=(舍去),∴=,故答案為.【點睛】本題考查了折疊的性質(zhì),相似多邊形的性質(zhì)等,熟練掌握相似多邊形的面積比等于相似比的平方是解題的關(guān)鍵.12、【解析】分析:按單項式乘以多項式的法則將括號去掉,在合并同類項即可.詳解:原式=.故答案為:.點睛:熟記整式乘法和加減法的相關(guān)運算法則是正確解答這類題的關(guān)鍵.13、1.【解析】連結(jié)AD,過D點作DG∥CM,∵,△AOC的面積是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面積是5,△ODF的面積是15×=,∴四邊形AMGF的面積=,∴△BOE的面積=△AOM的面積=×=12,∴△ADC與△BOE的面積和為5+12=1,故答案為:1.14、1【解析】∵點P(m,﹣2)與點Q(3,n)關(guān)于原點對稱,∴m=﹣3,n=2,則(m+n)2018=(﹣3+2)2018=1,故答案為1.15、【解析】
根據(jù)平行線分線段成比例定理解答即可.【詳解】解:∵DE∥BC,AD=2BD,∴,∵EF∥AB,∴,故答案為.【點睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應(yīng)線段成比例.16、2a+b.【解析】
先去括號,再合并同類項即可得出答案.【詳解】原式=2a-2b+3b=2a+b.故答案為:2a+b.三、解答題(共8題,共72分)17、-2(m+3),-1.【解析】
此題的運算順序:先括號里,經(jīng)過通分,再約分化為最簡,最后代值計算.【詳解】解:(m+2-)?,=,=-,=-2(m+3).把m=-代入,得,原式=-2×(-+3)=-1.18、(1)證明見解析;(2)證明見解析;(3)4.【解析】試題分析:(1)依據(jù)AE=EF,∠DEC=∠AEF=90°,即可證明△AEF是等腰直角三角形;(2)連接EF,DF交BC于K,先證明△EKF≌△EDA,再證明△AEF是等腰直角三角形即可得出結(jié)論;(3)當(dāng)AD=AC=AB時,四邊形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.試題解析:解:(1)如圖1.∵四邊形ABFD是平行四邊形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;(2)如圖2,連接EF,DF交BC于K.∵四邊形ABFD是平行四邊形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如圖3,當(dāng)AD=AC=AB時,四邊形ABFD是菱形,設(shè)AE交CD于H,依據(jù)AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.點睛:本題屬于四邊形綜合題,主要考查了全等三角形的判定和性質(zhì)、等腰直角三角形的判定和性質(zhì)、平行四邊形的性質(zhì)、菱形的性質(zhì)以及勾股定理等知識,解題的關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),尋找全等的條件是解題的難點.19、(1);(2)【解析】
(1)直接利用求概率公式計算即可;(2)畫樹狀圖(或列表格)列出所有等可能結(jié)果,根據(jù)概率公式即可解答.【詳解】(1);(2)方法1:根據(jù)題意可畫樹狀圖如下:方法2:根據(jù)題意可列表格如下:弟弟姐姐ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表(樹狀圖)可知,總共有12種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B喬治的結(jié)果有1種:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B喬治)【點睛】本題考查的是用列表法或樹狀圖法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解決問題用到概率公式:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)y=x2﹣4x+2;(2)點B的坐標(biāo)為(5,7);(1)∠BAD和∠DCO互補,理由詳見解析.【解析】
(1)由(1,1)在拋物線y=ax2上可求出a值,再由(﹣1,7)、(0,2)在拋物線y=x2+bx+c上可求出b、c的值,此題得解;(2)由△ADM和△BDM同底可得出兩三角形的面積比等于高的比,結(jié)合點A的坐標(biāo)即可求出點B的橫坐標(biāo),再利用二次函數(shù)圖象上點的坐標(biāo)特征即可求出點B的坐標(biāo);(1)利用二次函數(shù)圖象上點的坐標(biāo)特征可求出A、D的坐標(biāo),過點A作AN∥x軸,交BD于點N,則∠AND=∠DCO,根據(jù)點B、D的坐標(biāo)利用待定系數(shù)法可求出直線BD的解析式,利用一次函數(shù)圖象上點的坐標(biāo)特征可求出點N的坐標(biāo),利用兩點間的距離公式可求出BA、BD、BN的長度,由三者間的關(guān)系結(jié)合∠ABD=∠NBA,可證出△ABD∽△NBA,根據(jù)相似三角形的性質(zhì)可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互補.【詳解】(1)當(dāng)x=1時,y=ax2=1,解得:a=1;將(﹣1,7)、(0,2)代入y=x2+bx+c,得:,解得:,∴拋物線的表達(dá)式為y=x2﹣4x+2;(2)∵△ADM和△BDM同底,且△ADM與△BDM的面積比為2:1,∴點A到拋物線的距離與點B到拋物線的距離比為2:1.∵拋物線y=x2﹣4x+2的對稱軸為直線x=﹣=2,點A的橫坐標(biāo)為0,∴點B到拋物線的距離為1,∴點B的橫坐標(biāo)為1+2=5,∴點B的坐標(biāo)為(5,7).(1)∠BAD和∠DCO互補,理由如下:當(dāng)x=0時,y=x2﹣4x+2=2,∴點A的坐標(biāo)為(0,2),∵y=x2﹣4x+2=(x﹣2)2﹣2,∴點D的坐標(biāo)為(2,﹣2).過點A作AN∥x軸,交BD于點N,則∠AND=∠DCO,如圖所示.設(shè)直線BD的表達(dá)式為y=mx+n(m≠0),將B(5,7)、D(2,﹣2)代入y=mx+n,,解得:,∴直線BD的表達(dá)式為y=1x﹣2.當(dāng)y=2時,有1x﹣2=2,解得:x=,∴點N的坐標(biāo)為(,2).∵A(0,2),B(5,7),D(2,﹣2),∴AB=5,BD=1,BN=,∴==.又∵∠ABD=∠NBA,∴△ABD∽△NBA,∴∠ANB=∠DAB.∵∠ANB+∠AND=120°,∴∠DAB+∠DCO=120°,∴∠BAD和∠DCO互補.【點睛】本題是二次函數(shù)綜合題,考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)解析式、等底三角形面積的關(guān)系、二次函數(shù)的圖像與性質(zhì)、相似三角形的判定與性質(zhì).熟練掌握待定系數(shù)法是解(1)的關(guān)鍵;熟練掌握等底三角形面積的關(guān)系式解(2)的關(guān)鍵;證明△ABD∽△NBA是解(1)的關(guān)鍵.21、(1)見解析;(2)AF∥CE,見解析.【解析】
(1)直接利用全等三角三角形判定與性質(zhì)進(jìn)而得出△FOC≌△EOA(ASA),進(jìn)而得出答案;(2)利用平行四邊形的判定與性質(zhì)進(jìn)而得出答案.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,點O是對角線AC、BD的交點,∴AO=CO,DC∥AB,DC=AB,∴∠FCA=∠CAB,在△FOC和△EOA中,∴△FOC≌△EOA(ASA),∴FC=AE,∴DC-FC=AB-AE,即DF=EB;(2)AF∥CE,理由:∵FC=AE,F(xiàn)C∥AE,∴四邊形AECF是平行四邊形,∴AF∥CE.【點睛】此題主要考查了平行四邊形的判定與性質(zhì)以及全等三角形的判定與性質(zhì),正確得出△FOC≌△EOA(ASA)是解題關(guān)鍵.22、(1)12;(2)CH的長度是10cm.【解析】
(1)、過點A作于點N,過點M作于點Q,根據(jù)Rt△AMQ中α的三角函數(shù)得出得出AN的長度;(2)、根據(jù)△ANB和△AGC相似得出DN的長度,然后求出BN的長度,最后求出GC的長度,從而得出答案.【詳解】解:(1)、過點A作于點N,過點M作于點Q.在中,.∴,∴,∴.(2)、根據(jù)題意:∥.∴.∴.∵,∴.∴.∴.∴.答:的長度是10cm.點睛:本題考查了相似三角形的應(yīng)用以及三角函數(shù)的應(yīng)用,在運用數(shù)學(xué)知識解決問題過程中,關(guān)注核心內(nèi)容,經(jīng)歷測量、運算、建模等數(shù)學(xué)實踐活動為主線的問題探究過程,突出考查數(shù)學(xué)的應(yīng)用意識和解決問題的能力,蘊含數(shù)學(xué)建模,引導(dǎo)學(xué)生關(guān)注生活,利用數(shù)學(xué)方法解決實際問題.23、(1)4(1)4(3)(4)①a=±;②當(dāng)m=1-或m=5+時,1個公共點,當(dāng)1-<m≤1或5≤m<5+時,1個公共點,【解析】
(1)根據(jù)題意可以求得拋物線y=x1的焦點坐標(biāo)以及直徑的長;(1)根據(jù)題意可以求得拋物線y=x1-x+的焦點坐標(biāo)以及直徑的長;(3)根據(jù)題意和y=a(x-h)1+k(a≠0)的直徑為,可以求得a的值;(4)①根據(jù)題意和拋物線y=ax1+bx+c(a≠0)的焦點矩形的面積為1,可以求得a的值;②根據(jù)(1)中的結(jié)果和圖形可以求得拋物線y=x1-x+的焦點矩形與拋物線y=x1-1mx+m1+1公共點個數(shù)分別是1個以及1個時m的值.【詳解】(1)∵拋物線y=x1,∴此拋物線焦點的橫坐標(biāo)是0,縱坐標(biāo)是:0+=1,∴拋物線y=x1的焦點坐標(biāo)為(0,1),將y=1代入y=x1,得x1=-1,x1=1,∴此拋物線的直徑是:1-(-1)=4;(1)∵y=x1-x+=(x-3)1+1,∴此拋物線的焦點的橫坐標(biāo)是:3,縱坐標(biāo)是:1+=3,∴焦點坐標(biāo)為(3,3),將y=3代入y=(x-3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 16486-2:2024 EN Plastics piping systems for the supply of gaseous fuels - Unplasticized polyamide (PA-U) piping systems with fusion jointing and mechanical jointing - Pa
- GB/T 24630.1-2024產(chǎn)品幾何技術(shù)規(guī)范(GPS)平面度第1部分:詞匯和參數(shù)
- 試用勞動合同參考樣本
- 信息技術(shù)秘密授權(quán)使用與補償貿(mào)易合同
- 庫房租房合同協(xié)議書范本
- 移動應(yīng)用商家合作契約
- 保姆雇傭合同協(xié)議
- 2024離婚協(xié)議書范本格式
- 車輛維修合同標(biāo)準(zhǔn)模板
- 建筑設(shè)計院合作協(xié)議書2024年
- 《復(fù)活(節(jié)選)》課件+2024-2025學(xué)年統(tǒng)編版高中語文選擇性必修上冊
- 成人有創(chuàng)機(jī)械通氣氣道內(nèi)吸引技術(shù)操作標(biāo)準(zhǔn)解讀
- DB11T 583-2022 扣件式和碗扣式鋼管腳手架安全選用技術(shù)規(guī)程
- 地基土淺層平板載荷試驗方案
- 2024-2025學(xué)年初中信息技術(shù)(信息科技)七年級上冊贛科版教學(xué)設(shè)計合集
- 第四單元檢測卷(單元測試)-2024-2025學(xué)年三年級上冊語文統(tǒng)編版
- 蘇教版六年級上冊數(shù)學(xué)期中考試試題帶答案
- 浮選工理論考試題庫(濃縮400題)
- 趕工措施費用計算(精編版)
- 預(yù)制裝配式結(jié)構(gòu)及預(yù)制構(gòu)件工程吊裝施工工藝
- 中國聯(lián)通swot分析
評論
0/150
提交評論