2023-2024學(xué)年云南省丘北二中高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁(yè)
2023-2024學(xué)年云南省丘北二中高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁(yè)
2023-2024學(xué)年云南省丘北二中高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁(yè)
2023-2024學(xué)年云南省丘北二中高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁(yè)
2023-2024學(xué)年云南省丘北二中高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年云南省丘北二中高一下數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為2的正四棱柱的各頂點(diǎn)均在同一個(gè)球面上,則該球的體積為()A. B. C. D.2.已知為等差數(shù)列,為其前項(xiàng)和.若,則()A. B. C. D.3.在正方體中為底面的中心,為的中點(diǎn),則異面直線與所成角的正弦值為()A. B. C. D.4.等差數(shù)列的首項(xiàng)為.公差不為,若成等比數(shù)列,則數(shù)列的前項(xiàng)和為()A. B. C. D.5.函數(shù)(其中,,)的圖象如圖所示,為了得到的圖象,只需把的圖象上所有的點(diǎn)()A.向右平移個(gè)單位長(zhǎng)度 B.向左平移個(gè)單位長(zhǎng)度C.向右平移個(gè)單位長(zhǎng)度 D.向左平移個(gè)單位長(zhǎng)度6.在某次測(cè)量中得到樣本數(shù)據(jù)如下:,若樣本數(shù)據(jù)恰好是樣本每個(gè)數(shù)都增加得到,則、兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是()A.眾數(shù) B.中位數(shù) C.方差 D.平均數(shù)7.的值等于()A. B. C. D.8.在等差數(shù)列中,,則的值()A. B. C. D.9.已知函數(shù),如果不等式的解集為,那么不等式的解集為()A. B.C. D.10.在中,,,則的形狀是()A.鈍角三角形 B.銳角三角形 C.直角三角形 D.不能確定二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線:與圓交于,兩點(diǎn),過(guò),分別作的垂線與軸交于,兩點(diǎn),若,則__________.12.方程的解=__________.13.在平行六面體中,為與的交點(diǎn),若存在實(shí)數(shù),使向量,則__________.14.在四面體A-BCD中,AB=AC=DB=DC=BC,且四面體A-BCD的最大體積為,則四面體A-BCD外接球的表面積為________.15.若點(diǎn),是圓C:上不同的兩點(diǎn),且,則的值為______.16.已知,,則________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.設(shè)向量,,令函數(shù),若函數(shù)的部分圖象如圖所示,且點(diǎn)的坐標(biāo)為.(1)求點(diǎn)的坐標(biāo);(2)求函數(shù)的單調(diào)增區(qū)間及對(duì)稱軸方程;(3)若把方程的正實(shí)根從小到大依次排列為,求的值.18.已知,,且(Ⅰ)求的值;(Ⅱ)若,求的值.19.已知夾角為,且,,求:(1);(2)與的夾角.20.已知,,與的夾角是(1)計(jì)算:①,②;(2)當(dāng)為何值時(shí),與垂直?21.已知在三棱錐S-ABC中,∠ACB=,又SA⊥平面ABC,AD⊥SC于D,求證:AD⊥平面SBC.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

根據(jù)題意可知所求的球?yàn)檎睦庵耐饨忧?,根?jù)正四棱柱的特點(diǎn)利用勾股定理可求得外接球半徑,代入球的體積公式求得結(jié)果.【詳解】由題意可知所求的球?yàn)檎睦庵耐饨忧虻酌嬲叫螌?duì)角線長(zhǎng)為:外接球半徑外接球體積本題正確選項(xiàng):【點(diǎn)睛】本題考查正棱柱外接球體積的求解問(wèn)題,關(guān)鍵是能夠根據(jù)正棱柱的特點(diǎn)確定球心位置,從而利用勾股定理求得外接球半徑.2、D【解析】試題分析:設(shè)等差數(shù)列的公差為,由題意得,解得,所以,故答案為D.考點(diǎn):1、數(shù)列的通項(xiàng)公式;2、數(shù)列的前項(xiàng)和.3、B【解析】

取BC中點(diǎn)為M,連接OM,EM找出異面直線夾角為,在三角形中利用邊角關(guān)系得到答案.【詳解】取BC中點(diǎn)為M,連接OM,EM在正方體中為底面的中心,為的中點(diǎn)易知:異面直線與所成角為設(shè)正方體邊長(zhǎng)為2,在中:故答案選B【點(diǎn)睛】本題考查了立體幾何里異面直線的夾角,通過(guò)平行找到對(duì)應(yīng)的角是解題的關(guān)鍵.4、A【解析】

根據(jù)等比中項(xiàng)定義可得;利用和表示出等式,可構(gòu)造方程求得;利用等差數(shù)列求和公式求得結(jié)果.【詳解】由題意得:設(shè)等差數(shù)列公差為,則即:,解得:本題正確選項(xiàng):【點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,涉及到等比中項(xiàng)、等差數(shù)列前項(xiàng)和公式的應(yīng)用;關(guān)鍵是能夠構(gòu)造方程求出公差,屬于常考題型.5、C【解析】

通過(guò)圖象可以知道:最低點(diǎn)的縱坐標(biāo)為,函數(shù)的圖象與橫軸的交點(diǎn)的坐標(biāo)為,與之相鄰的最低點(diǎn)的坐標(biāo)為,這樣可以求出和最小正周期,利用余弦型函數(shù)最小正周期公式,可以求出,把零點(diǎn)代入解析式中,可以求出,這樣可以求出函數(shù)的解析式,利用誘導(dǎo)公式化為正弦型三角函數(shù)解析式形式,最后利用平移變換解析式的變化得出正確答案.【詳解】由圖象可知:函數(shù)的最低點(diǎn)的縱坐標(biāo)為,函數(shù)的圖象與橫軸的交點(diǎn)的坐標(biāo)為,與之相鄰的最低點(diǎn)的坐標(biāo)為,所以,設(shè)函數(shù)的最小正周期為,則有,而,把代入函數(shù)解析式中,得,所以,而,顯然由向右平移個(gè)單位長(zhǎng)度得到的圖象,故本題選C.【點(diǎn)睛】本題考查了由函數(shù)圖象求余弦型函數(shù)解析式,考查了正弦型函數(shù)圖象之間的平移變換規(guī)律.6、C【解析】

分別計(jì)算出、兩個(gè)樣本數(shù)據(jù)的眾數(shù)、中位數(shù)、方差和平均數(shù),再進(jìn)行判斷?!驹斀狻繕颖镜臄?shù)據(jù)為:、、、、,沒有眾數(shù),中位數(shù)為,平均數(shù)為,方差為,樣本的數(shù)據(jù)為:、、、、,沒有眾數(shù),中位數(shù)為,平均數(shù)為,方差為,因此,兩個(gè)樣本數(shù)據(jù)的方差沒變,故選:D?!军c(diǎn)睛】本題考查樣本的數(shù)據(jù)特征,考查對(duì)樣本數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù)以及方差概念的理解,熟練利用相關(guān)公式計(jì)算這些數(shù)據(jù),是解本題的關(guān)鍵,屬于中等題。7、A【解析】=,選A.8、B【解析】

根據(jù)等差數(shù)列的性質(zhì),求得,再由,即可求解.【詳解】根據(jù)等差數(shù)列的性質(zhì),可得,即,則,故選B.【點(diǎn)睛】本題主要考查了等差數(shù)列的性質(zhì),以及特殊角的三角函數(shù)值的計(jì)算,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、A【解析】

一元二次不等式大于零解集是,先判斷二次項(xiàng)系數(shù)為負(fù),再根據(jù)根與系數(shù)關(guān)系,可求出a,b的值,代入解析式,求解不等式.【詳解】由的解集是,則故有,即.由解得或故不等式的解集是,故選:A.【點(diǎn)睛】對(duì)于含參數(shù)的一元二次不等式需要先判斷二次項(xiàng)系數(shù)的正負(fù),再進(jìn)一步求解參數(shù).10、C【解析】

利用余弦定理求出,再利用余弦定理求得的值,即可判斷三角形的形狀.【詳解】在中,,解得:;∵,∵,,∴是直角三角形.故選:C.【點(diǎn)睛】本題考查余弦定理的應(yīng)用、三角形形狀的判定,考查邏輯推理能力和運(yùn)算求解能力.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】

由題,根據(jù)垂徑定理求得圓心到直線的距離,可得m的值,既而求得CD的長(zhǎng)可得答案.【詳解】因?yàn)?,且圓的半徑為,所以圓心到直線的距離為,則由,解得,代入直線的方程,得,所以直線的傾斜角為,由平面幾何知識(shí)知在梯形中,.故答案為4【點(diǎn)睛】解決直線與圓的綜合問(wèn)題時(shí),一方面,要注意運(yùn)用解析幾何的基本思想方法(即幾何問(wèn)題代數(shù)化),把它轉(zhuǎn)化為代數(shù)問(wèn)題;另一方面,由于直線與圓和平面幾何聯(lián)系得非常緊密,因此,準(zhǔn)確地作出圖形,并充分挖掘幾何圖形中所隱含的條件,利用幾何知識(shí)使問(wèn)題較為簡(jiǎn)捷地得到解決.12、-1【解析】分析:由對(duì)數(shù)方程,轉(zhuǎn)化為指數(shù)方程,解方程即可.詳解:由log2(1﹣2x)=﹣1可得(1﹣2x)=,解方程可求可得,x=﹣1故答案為:﹣1點(diǎn)睛:本題主要考查了對(duì)數(shù)方程的求解,解題中要善于利用對(duì)數(shù)與指數(shù)的轉(zhuǎn)化,屬于基礎(chǔ)題.13、【解析】

在平行六面體中把向量用用表示,再利用待定系數(shù)法,求得.再求解?!驹斀狻咳鐖D所示:因?yàn)椋忠驗(yàn)?,所以,所?故答案為:【點(diǎn)睛】本題主要考查了空間向量的基本定理,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.14、【解析】

當(dāng)面ABC面與BCD垂直時(shí),四面體A-BCD的體積最大,根據(jù)最大體積為求出四面體的邊長(zhǎng),又△ABC和△BCD是等腰直角三角形,所以四面體A-BCD外接球的球心位于的中點(diǎn),從而得到半徑,即可求解.【詳解】如圖所示:當(dāng)面ABC面與BCD垂直時(shí),四面體A-BCD的體積最大為,又AB=AC=DB=DC=BC,所以△ABC和△BCD是等腰直角三角形,所以四面體A-BCD外接球的球心為的中點(diǎn),又,解得,,,所以四面體A-BCD外接球的半徑故四面體A-BCD外接球的表面積為.【點(diǎn)睛】本題考查多面體的外接圓及相關(guān)計(jì)算,多面體外接圓問(wèn)題關(guān)鍵在圓心和半徑.15、【解析】

由,再結(jié)合坐標(biāo)運(yùn)算即可得解.【詳解】解:因?yàn)辄c(diǎn),是圓C:上不同的兩點(diǎn),則,,又所以,即,故答案為:.【點(diǎn)睛】本題考查了向量模的運(yùn)算,重點(diǎn)考查了運(yùn)算能力,屬基礎(chǔ)題.16、【解析】

直接利用反三角函數(shù)求解角的大小,即可得到答案.【詳解】因?yàn)椋?,根?jù)反三角函數(shù)的性質(zhì),可得.故答案為:.【點(diǎn)睛】本題主要考查了三角方程的解法,以及反三角函數(shù)的應(yīng)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)單調(diào)遞增區(qū)間為;對(duì)稱軸方程為,;(3)14800【解析】

(1)先求出,令求出點(diǎn)B的坐標(biāo);(2)利用復(fù)合函數(shù)的單調(diào)性原理求函數(shù)的單調(diào)增區(qū)間,利用三角函數(shù)的圖像和性質(zhì)求對(duì)稱軸方程;(3)由(2)知對(duì)稱軸方程為,,所以,,…,,即得解.【詳解】解:(1)由已知,得∴令,得,,∴,.當(dāng)時(shí),,∴得坐標(biāo)為(2)單調(diào)遞增區(qū)間,得,∴單調(diào)遞增區(qū)間為對(duì)稱軸,得,∴對(duì)稱軸方程為,(3)由,得,根據(jù)正弦函數(shù)圖象的對(duì)稱性,且由(2)知對(duì)稱軸方程為,∴,,…,∴【點(diǎn)睛】本題主要考查三角恒等變換和三角函數(shù)的圖像和性質(zhì),考查等差數(shù)列求和,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于中檔題.18、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)根據(jù)題中條件,求出,進(jìn)而可得,再由兩角差的正切公式,即可得出結(jié)果;(Ⅱ)根據(jù)題中條件,得到,求出,再由,根據(jù)兩角差的正弦公式,即可求出結(jié)果.【詳解】(Ⅰ)因?yàn)?,,所以,因此,所以?Ⅱ)因?yàn)椋?,所以,又,所以,所以,因?【點(diǎn)睛】本題主要考查三角恒等變換,給值求值的問(wèn)題,熟記公式即可,屬于常考題型.19、(1)(2)【解析】試題分析:(1)先求模的平方將問(wèn)題轉(zhuǎn)化為向量的數(shù)量積問(wèn)題.(2)根據(jù)數(shù)量積公式即可求得兩向量的夾角.(1),,所以.(2)設(shè)與的夾角為.則,因?yàn)?,所以.考點(diǎn):1向量的數(shù)量積;2向量的模長(zhǎng).20、(1)①;②;(2).【解析】

利用數(shù)量積的定義求解出的值;(1)將所求模長(zhǎng)平方,從而得到關(guān)于模長(zhǎng)和數(shù)量積的式子,代入求得模長(zhǎng)的平方,再開平方得到結(jié)果;(2)向量互相垂直得到數(shù)量積等于零,由此建立方程,解方程求得結(jié)果.【詳解】由已知得:(1)①②(2)若與垂直,則即:,解得:【點(diǎn)睛】本題考查利用數(shù)量積求解向量的模長(zhǎng)、利用數(shù)量積與向量垂直的關(guān)系求解參數(shù)的問(wèn)題.求解向量的模長(zhǎng)關(guān)鍵是能夠通過(guò)平方運(yùn)算將問(wèn)題轉(zhuǎn)化為模長(zhǎng)和數(shù)量積運(yùn)算的形式,從而使

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論