福建省廈門市思明區(qū)大同中學2024屆中考適應性考試數(shù)學試題含解析_第1頁
福建省廈門市思明區(qū)大同中學2024屆中考適應性考試數(shù)學試題含解析_第2頁
福建省廈門市思明區(qū)大同中學2024屆中考適應性考試數(shù)學試題含解析_第3頁
福建省廈門市思明區(qū)大同中學2024屆中考適應性考試數(shù)學試題含解析_第4頁
福建省廈門市思明區(qū)大同中學2024屆中考適應性考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

福建省廈門市思明區(qū)大同中學2024屆中考適應性考試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.甲、乙兩人參加射擊比賽,每人射擊五次,命中的環(huán)數(shù)如下表:次序第一次第二次第三次第四次第五次甲命中的環(huán)數(shù)(環(huán))67868乙命中的環(huán)數(shù)(環(huán))510767根據(jù)以上數(shù)據(jù),下列說法正確的是()A.甲的平均成績大于乙 B.甲、乙成績的中位數(shù)不同C.甲、乙成績的眾數(shù)相同 D.甲的成績更穩(wěn)定2.|﹣3|=()A. B.﹣ C.3 D.﹣33.從邊長為的大正方形紙板中挖去一個邊長為的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙)。那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為()A. B.C. D.4.如圖數(shù)軸的A、B、C三點所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點O與A、B的距離分別為4、1,則關于O的位置,下列敘述何者正確?()A.在A的左邊 B.介于A、B之間C.介于B、C之間 D.在C的右邊5.直線y=3x+1不經(jīng)過的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.217.已知拋物線y=ax2+bx+c的圖象如圖所示,頂點為(4,6),則下列說法錯誤的是()A.b2>4ac B.a(chǎn)x2+bx+c≤6C.若點(2,m)(5,n)在拋物線上,則m>n D.8a+b=08.關于x的一元二次方程x2+2x+k+1=0的兩個實根x1,x2,滿足x1+x2﹣x1x2<﹣1,則k的取值范圍在數(shù)軸上表示為()A. B.C. D.9.如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F(xiàn)點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為A.6 B.8 C.10 D.1210.如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處.若AD=3,BC=5,則EF的值是()A. B.2 C. D.211.如圖,實數(shù)﹣3、x、3、y在數(shù)軸上的對應點分別為M、N、P、Q,這四個數(shù)中絕對值最小的數(shù)對應的點是()A.點M B.點N C.點P D.點Q12.如圖是一個正方體展開圖,把展開圖折疊成正方體后,“愛”字一面相對面上的字是()A.美 B.麗 C.泗 D.陽二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,P為正方形ABCD內(nèi)一點,PA:PB:PC=1:2:3,則∠APB=_____________.14.如圖,點P(3a,a)是反比例函(k>0)與⊙O的一個交點,圖中陰影部分的面積為10π,則反比例函數(shù)的表達式為______.15.如圖,在四邊形ABCD中,AD∥BC,AB=CD且AB與CD不平行,AD=2,∠BCD=60°,對角線CA平分∠BCD,E,F(xiàn)分別是底邊AD,BC的中點,連接EF,點P是EF上的任意一點,連接PA,PB,則PA+PB的最小值為__.16.若式子有意義,則x的取值范圍是______.17.已知反比例函數(shù)的圖像經(jīng)過點(-2017,2018),當時,函數(shù)值y隨自變量x的值增大而_________.(填“增大”或“減小”)18.如圖,在平面直角坐標系中,矩形活動框架ABCD的長AB為2,寬AD為,其中邊AB在x軸上,且原點O為AB的中點,固定點A、B,把這個矩形活動框架沿箭頭方向推,使D落在y軸的正半軸上點D′處,點C的對應點C′的坐標為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,后求值:,其中.20.(6分)先化簡,再求值:,其中a是方程a2+a﹣6=0的解.21.(6分)如圖,已知△ABC內(nèi)接于⊙O,BC交直徑AD于點E,過點C作AD的垂線交AB的延長線于點G,垂足為F.連接OC.(1)若∠G=48°,求∠ACB的度數(shù);(1)若AB=AE,求證:∠BAD=∠COF;(3)在(1)的條件下,連接OB,設△AOB的面積為S1,△ACF的面積為S1.若tan∠CAF=,求的值.22.(8分)某保健品廠每天生產(chǎn)A,B兩種品牌的保健品共600瓶,A,B兩種產(chǎn)品每瓶的成本和利潤如表,設每天生產(chǎn)A產(chǎn)品x瓶,生產(chǎn)這兩種產(chǎn)品每天共獲利y元.(1)請求出y關于x的函數(shù)關系式;(2)如果該廠每天至少投入成本26400元,那么每天至少獲利多少元?(3)該廠每天生產(chǎn)的A,B兩種產(chǎn)品被某經(jīng)銷商全部訂購,廠家對A產(chǎn)品進行讓利,每瓶利潤降低元,廠家如何生產(chǎn)可使每天獲利最大?最大利潤是多少?AB成本(元/瓶)5035利潤(元/瓶)201523.(8分)在星期一的第八節(jié)課,我校體育老師隨機抽取了九年級的總分學生進行體育中考的模擬測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,按得分劃分成A、B、C、D、E、F六個等級,并繪制成如下兩幅不完整的統(tǒng)計圖表.等級得分x(分)頻數(shù)(人)A95<x≤1004B90<x≤95mC85<x≤90nD80<x≤8524E75<x≤808F70<x≤754請你根據(jù)圖表中的信息完成下列問題:(1)本次抽樣調(diào)查的樣本容量是.其中m=,n=.(2)扇形統(tǒng)計圖中,求E等級對應扇形的圓心角α的度數(shù);(3)我校九年級共有700名學生,估計體育測試成績在A、B兩個等級的人數(shù)共有多少人?(4)我校決定從本次抽取的A等級學生(記為甲、乙、丙、?。┲校S機選擇2名成為學校代表參加全市體能競賽,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.24.(10分)已知:如圖,在△ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,E為的中點.求證:∠ACD=∠DEC;(2)延長DE、CB交于點P,若PB=BO,DE=2,求PE的長25.(10分)計算:÷(﹣1)26.(12分)如圖,一座鋼結(jié)構(gòu)橋梁的框架是△ABC,水平橫梁BC長18米,中柱AD高6米,其中D是BC的中點,且AD⊥BC.(1)求sinB的值;(2)現(xiàn)需要加裝支架DE、EF,其中點E在AB上,BE=2AE,且EF⊥BC,垂足為點F,求支架DE的長.27.(12分)如圖,AB為⊙O的直徑,點D、E位于AB兩側(cè)的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.(1)求證:CD∥AB;(2)填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)已知條件中的數(shù)據(jù)計算出甲、乙的方差,中位數(shù)和眾數(shù)后,再進行比較即可.【詳解】把甲命中的環(huán)數(shù)按大小順序排列為:6,6,7,8,8,故中位數(shù)為7;把乙命中的環(huán)數(shù)按大小順序排列為:5,6,7,7,10,故中位數(shù)為7;∴甲、乙成績的中位數(shù)相同,故選項B錯誤;根據(jù)表格中數(shù)據(jù)可知,甲的眾數(shù)是8環(huán),乙的眾數(shù)是7環(huán),∴甲、乙成績的眾數(shù)不同,故選項C錯誤;甲命中的環(huán)數(shù)的平均數(shù)為:x甲乙命中的環(huán)數(shù)的平均數(shù)為:x乙∴甲的平均數(shù)等于乙的平均數(shù),故選項A錯誤;甲的方差S甲2=15[(6?7)2+(7?7)2+(8?7)2+(6?7)2乙的方差=15[(5?7)2+(10?7)2+(7?7)2+(6?7)2+(7?7)2因為2.8>0.8,所以甲的穩(wěn)定性大,故選項D正確.故選D.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.同時還考查了眾數(shù)的中位數(shù)的求法.2、C【解析】

根據(jù)絕對值的定義解答即可.【詳解】|-3|=3故選:C【點睛】本題考查的是絕對值,理解絕對值的定義是關鍵.3、D【解析】

分別根據(jù)正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗證成立的公式.【詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【點睛】考點:等腰梯形的性質(zhì);平方差公式的幾何背景;平行四邊形的性質(zhì).4、C【解析】分析:由A、B、C三點表示的數(shù)之間的關系結(jié)合三點在數(shù)軸上的位置即可得出b=a+3,c=b+5,再根據(jù)原點O與A、B的距離分別為1、1,即可得出a=±1、b=±1,結(jié)合a、b、c間的關系即可求出a、b、c的值,由此即可得出結(jié)論.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原點O與A、B的距離分別為1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴點O介于B、C點之間.故選C.點睛:本題考查了數(shù)值以及絕對值,解題的關鍵是確定a、b、c的值.本題屬于基礎題,難度不大,解決該題型題目時,根據(jù)數(shù)軸上點的位置關系分別找出各點代表的數(shù)是關鍵.5、D【解析】

利用兩點法可畫出函數(shù)圖象,則可求得答案.【詳解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,∴直線與x軸交于點(-,0),與y軸交于點(0,1),其函數(shù)圖象如圖所示,∴函數(shù)圖象不過第四象限,故選:D.【點睛】本題主要考查一次函數(shù)的性質(zhì),正確畫出函數(shù)圖象是解題的關鍵.6、A【解析】

根據(jù)已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,

∴cosB==,

∴∠B=45°,

∵sinC===,

∴AD=3,

∴CD==4,

∴BD=3,

則△ABC的面積是:×AD×BC=×3×(3+4)=.

故選:A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.7、C【解析】觀察可得,拋物線與x軸有兩個交點,可得,即,選項A正確;拋物線開口向下且頂點為(4,6)可得拋物線的最大值為6,即,選項B正確;由題意可知拋物線的對稱軸為x=4,因為4-2=2,5-4=1,且1<2,所以可得m<n,選項C錯誤;因?qū)ΨQ軸,即可得8a+b=0,選項D正確,故選C.點睛:本題主要考查了二次函數(shù)y=ax2+bx+c圖象與系數(shù)的關系,解決本題的關鍵是從圖象中獲取信息,利用數(shù)形結(jié)合思想解決問題,本題難度適中.8、D【解析】試題分析:根據(jù)根的判別式和根與系數(shù)的關系列出不等式,求出解集.解:∵關于x的一元二次方程x2+2x+k+1=0有兩個實根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1?x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式組的解集為﹣2<k≤0,在數(shù)軸上表示為:,故選D.點評:本題考查了根的判別式、根與系數(shù)的關系,在數(shù)軸上找到公共部分是解題的關鍵.9、C【解析】

連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再再根據(jù)EF是線段AC的垂直平分線可知,點C關于直線EF的對稱點為點A,故AD的長為CM+MD的最小值,由此即可得出結(jié)論.【詳解】連接AD,∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=16,解得AD=8,∵EF是線段AC的垂直平分線,∴點C關于直線EF的對稱點為點A,∴AD的長為CM+MD的最小值,∴△CDM的周長最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故選C.【點睛】本題考查的是軸對稱-最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關鍵.10、A【解析】試題分析:先根據(jù)折疊的性質(zhì)得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=2,所以EF=.解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四邊形ABHD為矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故選A.點評:本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.也考查了勾股定理.11、D【解析】∵實數(shù)-3,x,3,y在數(shù)軸上的對應點分別為M、N、P、Q,

∴原點在點M與N之間,

∴這四個數(shù)中絕對值最大的數(shù)對應的點是點Q.

故選D.12、D【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點作答.【詳解】解:正方體的表面展開圖,相對的面之間一定相隔一個正方形,“愛”字一面相對面上的字是“陽”;故本題答案為:D.【點睛】本題主要考查了正方體相對兩個面上的文字,注意正方體的空間圖形是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、°【解析】

通過旋轉(zhuǎn),把PA、PB、PC或關聯(lián)的線段集中到同一個三角形,再根據(jù)兩邊的平方和等于第三邊求證直角三角形,可以求解∠APB.【詳解】把△PAB繞B點順時針旋轉(zhuǎn)90°,得△P′BC,則△PAB≌△P′BC,設PA=x,PB=2x,PC=3x,連PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案為135°.【點睛】本題考查的是正方形四邊相等的性質(zhì),考查直角三角形中勾股定理的運用,把△PAB順時針旋轉(zhuǎn)90°使得A′與C點重合是解題的關鍵.14、y=【解析】設圓的半徑是r,根據(jù)圓的對稱性以及反比例函數(shù)的對稱性可得:πr2=10π解得:r=.∵點P(3a,a)是反比例函y=(k>0)與O的一個交點,∴3a2=k.∴a2==4.∴k=3×4=12,則反比例函數(shù)的解析式是:y=.故答案是:y=.點睛:本題主要考查了反比例函數(shù)圖象的對稱性,正確根據(jù)對稱性求得圓的半徑是解題的關鍵.15、2【解析】

將PA+PB轉(zhuǎn)化為PA+PC的值即可求出最小值.【詳解】解:E,F分別是底邊AD,BC的中點,四邊形ABCD是等腰梯形,B點關于EF的對稱點C點,AC即為PA+PB的最小值,∠BCD=,對角線AC平分∠BCD,∠ABC=,ZBCA=,∠BAC=,AD=2,PA+PB的最小值=.故答案為:.【點睛】求PA+PB的最小值,PA+PB不能直接求,可考慮轉(zhuǎn)化PA+PC的值,從而找出其最小值求解.16、x>.【解析】解:依題意得:2x+3>1.解得x>.故答案為x>.17、增大【解析】

根據(jù)題意,利用待定系數(shù)法解出系數(shù)的符號,再根據(jù)k值的正負確定函數(shù)值的增減性.【詳解】∵反比例函數(shù)的圖像經(jīng)過點(-2017,2018),∴k=-2017×2018<0,∴當x>0時,y隨x的增大而增大.故答案為增大.18、(2,1)【解析】

由已知條件得到AD′=AD=,AO=AB=1,根據(jù)勾股定理得到OD′==1,于是得到結(jié)論.【詳解】解:∵AD′=AD=,AO=AB=1,∴OD′==1,∵C′D′=2,C′D′∥AB,

∴C′(2,1),

故答案為:(2,1)【點睛】本題考查了矩形的性質(zhì),坐標與圖形的性質(zhì),勾股定理,正確的識別圖形是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、,【解析】分析:先把分值分母因式分解后約分,再進行通分得到原式=,然后把x的值代入計算即可.詳解:原式=?﹣1=﹣=當x=+1時,原式==.點睛:本題考查了分式的化簡求值:先把分式化簡后,再把分式中未知數(shù)對應的值代入求出分式的值.20、.【解析】

先計算括號里面的,再利用除法化簡原式,【詳解】,=,=,=,=,由a2+a﹣6=0,得a=﹣3或a=2,∵a﹣2≠0,∴a≠2,∴a=﹣3,當a=﹣3時,原式=.【點睛】本題考查了分式的化簡求值及一元二次方程的解,解題的關鍵是熟練掌握分式的混合運算.21、(1)48°(1)證明見解析(3)【解析】

(1)連接CD,根據(jù)圓周角定理和垂直的定義可得結(jié)論;

(1)先根據(jù)等腰三角形的性質(zhì)得:∠ABE=∠AEB,再證明∠BCG=∠DAC,可得,則所對的圓周角相等,根據(jù)同弧所對的圓周角和圓心角的關系可得結(jié)論;

(3)過O作OG⊥AB于G,證明△COF≌△OAG,則OG=CF=x,AG=OF,設OF=a,則OA=OC=1x-a,根據(jù)勾股定理列方程得:(1x-a)1=x1+a1,則a=x,代入面積公式可得結(jié)論.【詳解】(1)連接CD,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(1)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴,∵AD是⊙O的直徑,AD⊥PC,∴,∴,∴∠BAD=1∠DAC,∵∠COF=1∠DAC,∴∠BAD=∠COF;(3)過O作OG⊥AB于G,設CF=x,∵tan∠CAF==,∴AF=1x,∵OC=OA,由(1)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,設OF=a,則OA=OC=1x﹣a,Rt△COF中,CO1=CF1+OF1,∴(1x﹣a)1=x1+a1,a=x,∴OF=AG=x,∵OA=OB,OG⊥AB,∴AB=1AG=x,∴.【點睛】圓的綜合題,考查了三角形的面積、垂徑定理、角平分線的性質(zhì)、三角形全等的性質(zhì)和判定以及解直角三角形,解題的關鍵是:(1)根據(jù)圓周角定理找出∠ACB+∠BCD=90°;(1)根據(jù)外角的性質(zhì)和圓的性質(zhì)得:;(3)利用三角函數(shù)設未知數(shù),根據(jù)勾股定理列方程解決問題.22、(1)y=5x+9000;(2)每天至少獲利10800元;(3)每天生產(chǎn)A產(chǎn)品250件,B產(chǎn)品350件獲利最大,最大利潤為9625元.【解析】試題分析:(1)A種品牌白酒x瓶,則B種品牌白酒(600-x)瓶;利潤=A種品牌白酒瓶數(shù)×A種品牌白酒一瓶的利潤+B種品牌白酒瓶數(shù)×B種品牌白酒一瓶的利潤,列出函數(shù)關系式;

(2)A種品牌白酒x瓶,則B種品牌白酒(600-x)瓶;成本=A種品牌白酒瓶數(shù)×A種品牌白酒一瓶的成本+B種品牌白酒瓶數(shù)×B種品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利潤.(3)列出y與x的關系式,求y的最大值時,x的值.試題解析:(1)y=20x+15(600-x)=5x+9000,∴y關于x的函數(shù)關系式為y=5x+9000;(2)根據(jù)題意,得50x+35(600-x)≥26400,解得x≥360,∵y=5x+9000,5>0,∴y隨x的增大而增大,∴當x=360時,y有最小值為10800,∴每天至少獲利10800元;(3),∵,∴當x=250時,y有最大值9625,∴每天生產(chǎn)A產(chǎn)品250件,B產(chǎn)品350件獲利最大,最大利潤為9625元.23、(1)80,12,28;(2)36°;(3)140人;(4)【解析】

(1)用D組的頻數(shù)除以它所占的百分比得到樣本容量;用樣本容量乘以B組所占的百分比得到m的值,然后用樣本容量分別減去其它各組的頻數(shù)即可得到n的值;(2)用E組所占的百分比乘以360°得到α的值;(3)利用樣本估計整體,用700乘以A、B兩組的頻率和可估計體育測試成績在A、B兩個等級的人數(shù);(4)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出恰好抽到甲和乙的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1)24÷30%=80,所以樣本容量為80;m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;故答案為80,12,28;(2)E等級對應扇形的圓心角α的度數(shù)=×360°=36°;(3)700×=140,所以估計體育測試成績在A、B兩個等級的人數(shù)共有140人;(4)畫樹狀圖如下:共12種等可能的結(jié)果數(shù),其中恰好抽到甲和乙的結(jié)果數(shù)為2,所以恰好抽到甲和乙的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.也考查了統(tǒng)計圖.24、(1)見解析;(2)PE=4.【解析】

(1)根據(jù)同角的余角相等得到∠ACD=∠B,然后由圓周角定理可得結(jié)論;(2)連結(jié)OE,根據(jù)圓周角定理和等腰三角形的性質(zhì)證明OE∥CD,然后由△POE∽△PCD列出比例式,求解即可.【詳解】解:(1)證明:∵BC是⊙O的直徑,∴∠BDC=90°,∴∠BCD+∠B=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACD=∠B,∵∠DEC=∠B,∴∠ACD=∠DEC(2)證明:連結(jié)OE∵E為BD弧的中點.∴∠DCE=∠BCE∵OC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論