2021-2022學(xué)年安徽省馬鞍山市名校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁
2021-2022學(xué)年安徽省馬鞍山市名校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁
2021-2022學(xué)年安徽省馬鞍山市名校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁
2021-2022學(xué)年安徽省馬鞍山市名校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁
2021-2022學(xué)年安徽省馬鞍山市名校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022學(xué)年安徽省馬鞍山市名校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知數(shù)a、b、c在數(shù)軸上的位置如圖所示,化簡|a+b|﹣|c﹣b|的結(jié)果是()A.a(chǎn)+b B.﹣a﹣c C.a(chǎn)+c D.a(chǎn)+2b﹣c2.1﹣的相反數(shù)是()A.1﹣ B.﹣1 C. D.﹣13.如圖,兩個反比例函數(shù)y1=(其中k1>0)和y2=在第一象限內(nèi)的圖象依次是C1和C2,點P在C1上.矩形PCOD交C2于A、B兩點,OA的延長線交C1于點E,EF⊥x軸于F點,且圖中四邊形BOAP的面積為6,則EF:AC為()A.:1 B.2: C.2:1 D.29:144.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列四個結(jié)論:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0沒有實數(shù)根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數(shù)).其中正確結(jié)論的個數(shù)是()A.4個 B.3個 C.2個 D.1個5.已知反比例函數(shù)y=的圖象在一、三象限,那么直線y=kx﹣k不經(jīng)過第()象限.A.一 B.二 C.三 D.四6.一組數(shù)據(jù):1、2、2、3,若添加一個數(shù)據(jù)2,則發(fā)生變化的統(tǒng)計量是A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差7.下列計算正確的是()A.2m+3n=5mnB.m2?m3=m6C.m8÷m6=m2D.(﹣m)3=m38.實數(shù)a,b在數(shù)軸上的位置如圖所示,以下說法正確的是()A.a(chǎn)+b=0 B.b<a C.a(chǎn)b>0 D.|b|<|a|9.《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學(xué)的重要著作,其中有一道題,原文是:“今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺.木長幾何?”意思是:用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺,問木頭長多少尺?可設(shè)木頭長為x尺,繩子長為y尺,則所列方程組正確的是()A. B. C. D.10.如圖,已知矩形ABCD中,BC=2AB,點E在BC邊上,連接DE、AE,若EA平分∠BED,則的值為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,折疊矩形ABCD的一邊AD,使點D落在BC邊的點F處,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周長_____________cm.12.如圖,在Rt△ABC中,∠ACB=90°,D、E、F分別是AB、BC、CA的中點,若CD=3cm,則EF=________cm.13.關(guān)于x的一元二次方程ax2﹣x﹣=0有實數(shù)根,則a的取值范圍為________.14.每年農(nóng)歷五月初五為端午節(jié),中國民間歷來有端午節(jié)吃粽子、賽龍舟的習(xí)俗.某班同學(xué)為了更好地了解某社區(qū)居民對鮮肉粽(A)豆沙粽(B)小棗粽(C)蛋黃粽(D)的喜愛情況,對該社區(qū)居民進行了隨機抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).分析圖中信息,本次抽樣調(diào)查中喜愛小棗粽的人數(shù)為________;若該社區(qū)有10000人,估計愛吃鮮肉粽的人數(shù)約為________.15.如圖,在?ABCD中,AC是一條對角線,EF∥BC,且EF與AB相交于點E,與AC相交于點F,3AE=2EB,連接DF.若S△AEF=1,則S△ADF的值為_____.16.已知方程x2﹣5x+2=0的兩個解分別為x1、x2,則x1+x2﹣x1?x2的值為______.17.已知整數(shù)k<5,若△ABC的邊長均滿足關(guān)于x的方程,則△ABC的周長是.三、解答題(共7小題,滿分69分)18.(10分)如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.(1)求新傳送帶AC的長度;(2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點4米的貨物MNQP是否需要挪走,并說明理由.(說明:⑴⑵的計算結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.24,≈2.45)19.(5分)我市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學(xué)生共有______人,扇形統(tǒng)計圖中“了解”部分所對應(yīng)扇形的圓心角為______°.(2)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù)為_______人.(3)若從對校園安全知識達到“了解”程度的3個女生A、B、C和2個男生M、N中分別隨機抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生A的概率.20.(8分)如圖,在平面直角坐標系中,點A和點C分別在x軸和y軸的正半軸上,OA=6,OC=4,以O(shè)A,OC為鄰邊作矩形OABC,動點M,N以每秒1個單位長度的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.(1)直接寫出點B的坐標為,直線OB的函數(shù)表達式為;(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式;并求t為何值時,S有最大值,并求出最大值.21.(10分)已知拋物線y=﹣x2﹣4x+c經(jīng)過點A(2,0).(1)求拋物線的解析式和頂點坐標;(2)若點B(m,n)是拋物線上的一動點,點B關(guān)于原點的對稱點為C.①若B、C都在拋物線上,求m的值;②若點C在第四象限,當AC2的值最小時,求m的值.22.(10分)如圖,已知△ABC是等邊三角形,點D在AC邊上一點,連接BD,以BD為邊在AB的左側(cè)作等邊△DEB,連接AE,求證:AB平分∠EAC.23.(12分)如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的頂點G在菱形對角線AC上運動,角的兩邊分別交邊BC、CD于E、F.(1)如圖甲,當頂點G運動到與點A重合時,求證:EC+CF=BC;(2)知識探究:①如圖乙,當頂點G運動到AC的中點時,請直接寫出線段EC、CF與BC的數(shù)量關(guān)系(不需要寫出證明過程);②如圖丙,在頂點G運動的過程中,若,探究線段EC、CF與BC的數(shù)量關(guān)系;(3)問題解決:如圖丙,已知菱形的邊長為8,BG=7,CF=,當>2時,求EC的長度.24.(14分)如圖,已知二次函數(shù)的圖象經(jīng)過,兩點.求這個二次函數(shù)的解析式;設(shè)該二次函數(shù)的對稱軸與軸交于點,連接,,求的面積.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

首先根據(jù)數(shù)軸可以得到a、b、c的取值范圍,然后利用絕對值的定義去掉絕對值符號后化簡即可.【詳解】解:通過數(shù)軸得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案為a+c.故選A.2、B【解析】

根據(jù)相反數(shù)的的定義解答即可.【詳解】根據(jù)a的相反數(shù)為-a即可得,1﹣的相反數(shù)是﹣1.故選B.【點睛】本題考查了相反數(shù)的定義,熟知相反數(shù)的定義是解決問題的關(guān)鍵.3、A【解析】試題分析:首先根據(jù)反比例函數(shù)y2=的解析式可得到=×3=,再由陰影部分面積為6可得到=9,從而得到圖象C1的函數(shù)關(guān)系式為y=,再算出△EOF的面積,可以得到△AOC與△EOF的面積比,然后證明△EOF∽△AOC,根據(jù)對應(yīng)邊之比等于面積比的平方可得到EF﹕AC=.故選A.考點:反比例函數(shù)系數(shù)k的幾何意義4、D【解析】①因為二次函數(shù)的對稱軸是直線x=﹣1,由圖象可得左交點的橫坐標大于﹣3,小于﹣2,所以﹣=﹣1,可得b=2a,當x=﹣3時,y<0,即9a﹣3b+c<0,9a﹣6a+c<0,3a+c<0,∵a<0,∴4a+c<0,所以①選項結(jié)論正確;②∵拋物線的對稱軸是直線x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm<a﹣b,m(am+b)+b<a,所以此選項結(jié)論不正確;③ax2+(b﹣1)x+c=0,△=(b﹣1)2﹣4ac,∵a<0,c>0,∴ac<0,∴﹣4ac>0,∵(b﹣1)2≥0,∴△>0,∴關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0有實數(shù)根;④由圖象得:當x>﹣1時,y隨x的增大而減小,∵當k為常數(shù)時,0≤k2≤k2+1,∴當x=k2的值大于x=k2+1的函數(shù)值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此選項結(jié)論不正確;所以正確結(jié)論的個數(shù)是1個,故選D.5、B【解析】

根據(jù)反比例函數(shù)的性質(zhì)得k>0,然后根據(jù)一次函數(shù)的進行判斷直線y=kx-k不經(jīng)過的象限.【詳解】∵反比例函數(shù)y=的圖象在一、三象限,∴k>0,∴直線y=kx﹣k經(jīng)過第一、三、四象限,即不經(jīng)過第二象限.故選:B.【點睛】考查了待定系數(shù)法求反比例函數(shù)的解析式:設(shè)出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);把已知條件(自變量與函數(shù)的對應(yīng)值)代入解析式,得到待定系數(shù)的方程;解方程,求出待定系數(shù);寫出解析式.也考查了反比例函數(shù)與一次函數(shù)的性質(zhì).6、D【解析】

解:A.原來數(shù)據(jù)的平均數(shù)是2,添加數(shù)字2后平均數(shù)仍為2,故A與要求不符;B.原來數(shù)據(jù)的中位數(shù)是2,添加數(shù)字2后中位數(shù)仍為2,故B與要求不符;C.原來數(shù)據(jù)的眾數(shù)是2,添加數(shù)字2后眾數(shù)仍為2,故C與要求不符;D.原來數(shù)據(jù)的方差==,添加數(shù)字2后的方差==,故方差發(fā)生了變化.故選D.7、C【解析】

根據(jù)同底數(shù)冪的除法,底數(shù)不變指數(shù)相減;合并同類項,系數(shù)相加字母和字母的指數(shù)不變;同底數(shù)冪的乘法,底數(shù)不變指數(shù)相加;冪的乘方,底數(shù)不變指數(shù)相乘,對各選項計算后利用排除法求解.【詳解】解:A、2m與3n不是同類項,不能合并,故錯誤;B、m2?m3=m5,故錯誤;C、正確;D、(-m)3=-m3,故錯誤;故選:C.【點睛】本題考查同底數(shù)冪的除法,合并同類項,同底數(shù)冪的乘法,冪的乘方很容易混淆,一定要記準法則才能做題.8、D【解析】

根據(jù)圖形可知,a是一個負數(shù),并且它的絕對是大于1小于2,b是一個正數(shù),并且它的絕對值是大于0小于1,即可得出|b|<|a|.【詳解】A選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),但表示它們的點到原點的距離不相等,所以它們不互為相反數(shù),和不為0,故A錯誤;B選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而正數(shù)都大于負數(shù),故B錯誤;C選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而異號兩數(shù)相乘積為負,負數(shù)都小于0,故C錯誤;D選項:由圖中信息可知,表示實數(shù)a的點到原點的距離大于表示實數(shù)b的點到原點的距離,而在數(shù)軸上表示一個數(shù)的點到原點的距離越遠其絕對值越大,故D正確.∴選D.9、A【解析】

根據(jù)“用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺”可以列出相應(yīng)的方程組,本題得以解決.【詳解】由題意可得,,故選A.【點睛】本題考查由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程組.10、C【解析】

過點A作AF⊥DE于F,根據(jù)角平分線上的點到角的兩邊距離相等可得AF=AB,利用全等三角形的判定和性質(zhì)以及矩形的性質(zhì)解答即可.【詳解】解:如圖,過點A作AF⊥DE于F,在矩形ABCD中,AB=CD,∵AE平分∠BED,∴AF=AB,∵BC=2AB,∴BC=2AF,∴∠ADF=30°,在△AFD與△DCE中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD≌△DCE(AAS),∴△CDE的面積=△AFD的面積=∵矩形ABCD的面積=AB?BC=2AB2,∴2△ABE的面積=矩形ABCD的面積﹣2△CDE的面積=(2﹣)AB2,∴△ABE的面積=,∴,故選:C.【點睛】本題考查了矩形的性質(zhì),角平分線上的點到角的兩邊距離相等的性質(zhì),以及全等三角形的判定與性質(zhì),關(guān)鍵是根據(jù)角平分線上的點到角的兩邊距離相等可得AF=AB.二、填空題(共7小題,每小題3分,滿分21分)11、36.【解析】試題分析:∵△AFE和△ADE關(guān)于AE對稱,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可設(shè)EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.∵∠EFC+∠AFB=90°,∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周長=8×2+10×2=36.考點:折疊的性質(zhì);矩形的性質(zhì);銳角三角函數(shù);勾股定理.12、3【解析】試題分析:根據(jù)點D為AB的中點可得:CD為直角三角形斜邊上的中線,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AB=2CD=6,根據(jù)E、F分別為中點可得:EF為△ABC的中位線,根據(jù)中位線的性質(zhì)可得:EF=AB=3.考點:(1)、直角三角形的性質(zhì);(2)、中位線的性質(zhì)13、a≥﹣1且a≠1【解析】

利用一元二次方程的定義和判別式的意義得到≠1且△=(﹣1)2﹣4a?(﹣)≥1,然后求出兩個不等式的公共部分即可.【詳解】根據(jù)題意得a≠1且△=(﹣1)2﹣4a?(﹣)≥1,解得:a≥﹣1且a≠1.故答案為a≥﹣1且a≠1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關(guān)系:當△>1時,方程有兩個不相等的兩個實數(shù)根;當△=1時,方程有兩個相等的兩個實數(shù)根;當△<1時,方程無實數(shù)根.14、120人,3000人【解析】

根據(jù)B的人數(shù)除以占的百分比得到調(diào)查的總?cè)藬?shù),再用總?cè)藬?shù)減去A、B、D的人數(shù)得到本次抽樣調(diào)查中喜愛小棗粽的人數(shù);利用該社區(qū)的總?cè)藬?shù)×愛吃鮮肉粽的人數(shù)所占的百分比得出結(jié)果.【詳解】調(diào)查的總?cè)藬?shù)為:60÷10%=600(人),本次抽樣調(diào)查中喜愛小棗粽的人數(shù)為:600﹣180﹣60﹣240=120(人);若該社區(qū)有10000人,估計愛吃鮮肉粽的人數(shù)約為:100003000(人).故答案為120人;3000人.【點睛】本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。部疾榱死脴颖竟烙嬁傮w.15、5【解析】

由3AE=2EB,和EF∥BC,證明△AEF∽△ABC,得S△AEFS△ABC=425,結(jié)合S△AEF=1,可知S△ADC=S△ABC=254,再由AFFC【詳解】解:∵3AE=2EB,設(shè)AE=2a,BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴S△AEFS△ABC=(AEAB)2=(∵S△AEF=1,∴S△ABC=254∵四邊形ABCD為平行四邊形,∴S∵EF∥BC,∴AFFC=AEBE=2a∴S△ADFS△CDF∴S△ADF=25S△ADC=5故答案是:5【點睛】本題考查了圖形的相似和平行線分線段成比例定理,中等難度,找到相似比是解題關(guān)鍵.16、1【解析】解:根據(jù)題意可得x1+x2==5,x1x2==2,∴x1+x2﹣x1x2=5﹣2=1.故答案為:1.點睛:本題主要考查了根據(jù)與系數(shù)的關(guān)系,利用一元二次方程的兩個根x1、x2具有這樣的關(guān)系:x1+x2=,x1x2=是解題的關(guān)鍵.17、6或12或1.【解析】

根據(jù)題意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整數(shù)k<5,∴k=4.∴方程變形為x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的邊長均滿足關(guān)于x的方程x2﹣6x+8=0,∴△ABC的邊長為2、2、2或4、4、4或4、4、2.∴△ABC的周長為6或12或1.考點:一元二次方程根的判別式,因式分解法解一元二次方程,三角形三邊關(guān)系,分類思想的應(yīng)用.【詳解】請在此輸入詳解!三、解答題(共7小題,滿分69分)18、(1)5.6(2)貨物MNQP應(yīng)挪走,理由見解析.【解析】

(1)如圖,作AD⊥BC于點DRt△ABD中,AD=ABsin45°=4在Rt△ACD中,∵∠ACD=30°∴AC=2AD=4即新傳送帶AC的長度約為5.6米.(2)結(jié)論:貨物MNQP應(yīng)挪走.在Rt△ABD中,BD=ABcos45°=4在Rt△ACD中,CD=ACcos30°=∴CB=CD—BD=∵PC=PB—CB≈4—2.1=1.9<2∴貨物MNQP應(yīng)挪走.19、(1)60,30;;(2)300;(3)【解析】

(1)由了解很少的有30人,占50%,可求得接受問卷調(diào)查的學(xué)生數(shù),繼而求得扇形統(tǒng)計圖中“了解”部分所對應(yīng)扇形的圓心角;(2)利用樣本估計總體的方法,即可求得答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好抽到女生A的情況,再利用概率公式求解即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調(diào)查的學(xué)生共有:30÷50%=60(人);∵了解部分的人數(shù)為60﹣(15+30+10)=5,∴扇形統(tǒng)計圖中“了解”部分所對應(yīng)扇形的圓心角為:×360°=30°;故答案為60,30;(2)根據(jù)題意得:900×=300(人),則估計該中學(xué)學(xué)生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù)為300人,故答案為300;(3)畫樹狀圖如下:所有等可能的情況有6種,其中抽到女生A的情況有2種,所以P(抽到女生A)==.【點睛】此題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖與扇形統(tǒng)計圖.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1),;(2),1,1.【解析】

(1)根據(jù)四邊形OABC為矩形即可求出點B坐標,設(shè)直線OB解析式為,將B代入即可求直線OB的解析式;(2)由題意可得,由(1)可得點的坐標為,表達出△OMP的面積即可,利用二次函數(shù)的性質(zhì)求出最大值.【詳解】解:(1)∵OA=6,OC=4,四邊形OABC為矩形,∴AB=OC=4,∴點B,設(shè)直線OB解析式為,將B代入得,解得,∴,故答案為:;(2)由題可知,,由(1)可知,點的坐標為,∴當時,有最大值1.【點睛】本題考查了二次函數(shù)與幾何動態(tài)問題,解題的關(guān)鍵是根據(jù)題意表達出點的坐標,利用幾何知識列出函數(shù)關(guān)系式.21、(1)拋物線解析式為y=﹣x2﹣4x+12,頂點坐標為(﹣2,16);(2)①m=2或m=﹣2;②m的值為.【解析】分析:(1)把點A(2,0)代入拋物線y=﹣x2﹣4x+c中求得c的值,即可得拋物線的解析式,根據(jù)拋物線的解析式求得拋物線的頂點坐標即可;(2)①由B(m,n)在拋物線上可得﹣m2﹣4m+12=n,再由點B關(guān)于原點的對稱點為C,可得點C的坐標為(﹣m,﹣n),又因C落在拋物線上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知點C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由拋物線頂點坐標為(﹣2,16),即可得0<n≤16,因為點B在拋物線上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以當n=時,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可確定m的值.詳解:(1)∵拋物線y=﹣x2﹣4x+c經(jīng)過點A(2,0),∴﹣4﹣8+c=0,即c=12,∴拋物線解析式為y=﹣x2﹣4x+12=﹣(x+2)2+16,則頂點坐標為(﹣2,16);(2)①由B(m,n)在拋物線上可得:﹣m2﹣4m+12=n,∵點B關(guān)于原點的對稱點為C,∴C(﹣m,﹣n),∵C落在拋物線上,∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,解得:﹣m2+4m+12=m2﹣4m﹣12,解得:m=2或m=﹣2;②∵點C(﹣m,﹣n)在第四象限,∴﹣m>0,﹣n<0,即m<0,n>0,∵拋物線頂點坐標為(﹣2,16),∴0<n≤16,∵點B在拋物線上,∴﹣m2﹣4m+12=n,∴m2+4m=﹣n+12,∵A(2,0),C(﹣m,﹣n),∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,當n=時,AC2有最小值,∴﹣m2﹣4m+12=,解得:m=,∵m<0,∴m=不合題意,舍去,則m的值為.點睛:本題是二次函數(shù)綜合題,第(1)問較為簡單,第(2)問根據(jù)點B(m,n)關(guān)于原點的對稱點C(-m,-n)均在二次函數(shù)的圖象上,代入后即可求出m的值即可;(3)確定出AC2與n之間的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求得當n=時,AC2有最小值,在解方程求得m的值即可.22、詳見解析【解析】

由等邊三角形的性質(zhì)得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,證出∠ABE=∠CBD,證明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出結(jié)論.【詳解】證明:∵△ABC,△DEB都是等邊三角形,∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,即∠ABE=∠CBD,在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD,BE=BD,,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠BAE=∠BAC,∴AB平分∠EAC.【點睛】本題考查了全等三角形的判定與性質(zhì),等邊三角形的性質(zhì)等知識,熟練掌握等邊三角形的性質(zhì),證明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論